
Introduction
Hello and Welcome to the ASP Special Online Module Format!

This module has been designed as an alternative delivery format of course
material. It is hoped that you will find it to be just as valuable as our previous
sessions have been. Before we begin, let me just take a moment to tell you how
this module is designed. To begin, a summary or table of contents is provided so
you can be aware of what each section contains. This is done to allow those who
have already worked past some concepts to move more expediently to material
that is new to them. Secondly, your expected assignments are explicitly listed in
the beginning, during and at the end of this module. This was done to make it
easier for you to not only know the expectations, but to think about the
assignments before, during and at the end of the reading. Also, note that I have
not enforced hard deadlines for any of the ASP assignments—this is done to
ensure full comprehension of the concepts and to reduce stress and anxiety.
Although it is recommended that you don’t get too far behind. Lastly, this module
contains a large amount of information and IT IS NOT my expectation that you
have this entire module completed before our next meeting. Rather, I just wanted
to ensure that you had enough information to continue towards successful
progression of your ASP website. Again, I hope that you enjoy this experience
and find it to be of great value. Let’s begin with the module.

Table of Contents
1. Review of ASP and database (DB) interaction.
2. Review of ASP Query Page
3. Review of ASP Insert Page
4. Introduction of UPDATE Page.
4.1 Page Two ASP UPDATE Code
4.2 Page Three ASP UPDATE CODE
5. Introduction to DELETE Page
6. Introduction to the State Concept
7. Conclusion

Deliverables

 Assignment 6

 produce a successful asp query page
produce a successful page with includes
create an additional query page that only returns one or two field values

1. Review of ASP and DB Interaction
One great feature of Active Server Pages is its ability to interact with databases.
However in order for this to occur we need to have six main items. These items
are established in the beginning and after they are completed we almost never
need to revisit them. Unfortunately sometimes problems arise and they usually
are a result of something being wrong with these six items. These items are:

1. Need to have an IIS server.
2. Need to have Frontpage extensions installed on your web, which resides

in the IIS Server.
3. Need to have a database created. Note, while we are using an Access

database, the DB can be in another format like SQL or Oracle.
4. Need to have permissions explicitly declared for the Internet Guest

Account (IUSR).
5. Need to create an ODBC Connection for the ASP pages to interact with

the server.
6. Need to have a global.asa file in the root directory of your web.

You may also recall that I mentioned that you need to have an adovbs.inc file
with a specific include call on your ASP pages. This is important for some ASP
pages, but not for all pages—unfortunately if you fail to include this file some of
your pages will not work—so it is best to have the file included.

2. Review of the ASP Query Page
In this example we reviewed the code that produced the result of displaying all
the fields and records in a database. It was a simple client to server interaction,
yet it holds importance as it provides the foundation for allowing very dynamic
queries. For example, in the cool online music store we use queries to allow visitors to
our website to see either the entire collection or just a small subset. Let’s take a look at
the code again.

 Assignment Seven

 produce a successful asp insert page

 Assignment Eight

 produce a successful asp update
produce a successful asp delete

<%@ LANGUAGE="VBSCRIPT" %> DECLARING THE LANGUAGE—although by default it is
VBSCRIPT
<!--#include file="adovbs.inc" --> --telling the server to find and read this
file before executing the rest of the page

<% --indicates the start of the script

 Set oConn=Server.CreateObject("ADODB.Connection")—creates a variable which
then creates an ASP object –specifically a database connection
 oConn.Open "carldb"—this variable object now references the ODBC connection
created and opens the Database associated with this system data source name
(DSN)
 strSQLStatement = "SELECT * FROM TEST " a string variable is created and
contains the SQL syntax to execute the query that shows all the fields and
records in a table called TEST from your database

Set oRs = oConn.Execute(strSQLStatement) a new variable is created that will
hold the result of the executed SQL syntax

 oRs.MoveFirst %> this syntax tells the server to locate the very first
record that was retrieved

</p>
<table border="1" cols="<% = oRs.Fields.Count%>" width="100%"> this syntax
determines the number of fields and creates a table which number of columns
equals the number of fields
 <tr>
 <% For Each oField In oRS.Fields %> a simple for statement that tells
the server to continue until it runs out of fields-in the next line it tells
the server to print out every field name that it finds
 <th bgcolor="#000080"><% = oField.Name %>
 </th>
 <% Next %> once completed with fields, the server is instructed to
move to the records
 </tr>
 <% Do While Not oRs.EOF %> tells the server to continue until there are no
more records
 <tr>
 <% For Each oField In oRs.Fields %> as with the field columns these
lines tell the server to print the value of the field for the record and if
none exist print a space
 <td align="RIGHT"><% If IsNull(oField) Then
 Response.Write " "
 Else
 Response.Write oField.Value
 End If %>

 </td>
 <% Next this instruction tells the server to continue and move to the
next field within the same record
 oRs.MoveNext %>
 </tr>
 <% Loop %> this loops tells the server to move to the next record
</table>
<% oRs.Close
 Set oRs = Nothing %> this command signifies the end of all the records found
and then deletes the information from memory for the server to use elsewhere

Note that at this point you were directed to replicate this code and successfully
produce an ASP page that resulted in displaying the entire contents of a table in
your database.

The last part of the query assignment asked you to experiment with the SQL
syntax that queried the database. There were a couple of directions that one
could have executed. One method was to remove the “*” and instead to have
listed specific field names. The second was to be more specific by using a
WHERE state to produce records that matched a specified criteria. While the
second direction is a little more complex, you can find help within Access by
selecting the SQL view in the Design mode of queries—see illustration below:

Deliverable required from review section:

3. Review of the ASP Insert Page
The specific example of this used in class was a simple online registration page.
Overall, when we are utilizing an insert page—we first are creating a format for
which a user can input data, and then we parse that data so it can be entered
into a database. Just as in java—we cannot use the same variable name, so we
have to create new variables that will take the same value as the original input
page and then we can put them into a database. Let’s take a look at this visually
to see if we can get it to make more sense.

 Assignment 6

 produce a successful asp query page
produce a successful page with includes
create an additional query page that only returns one or two field values

The first input page

In this page a quick little table is created that contains row titles next to text
boxes. Each text box is given a name—for example First Name is listed left of a
text box that is titled “txtfname”, Last Name is listed left of a text box that is titled
“txtlname”, and so forth. The submit button of this page sends the values entered
by the user to a page called reg_success.asp. This redirection is caused by right-
clicking within the form, selecting form properties, selecting the option button,
and finally by typing the name of the page into the box.

The redirect or second page called reg_success.asp produces the following
result:

This page provides a confirmation message in addition to allowing the user to select more
options. At this point we are not as concerned with the future options as we are with the
successful insertion of the user’s information. Let’s take a look at the code that made this
happen:

<%@ LANGUAGE="VBSCRIPT" %>
<!--#include file="adovbs.inc" -->

<html>

<%

 strfname = cStr(Request.Form("txtfname"))
 strlname = cStr(Request.Form("txtlname"))
 stradd = cStr(Request.Form("txtadd"))
 strcity = cStr(Request.Form("txtcity"))
 strstate = cStr(Request.Form("txtstate"))
 strzip = cStr(Request.Form("txtzip"))
 strphone = cStr(Request.Form("txtphone"))
 stremail = cStr(Request.Form("txtemail"))
 strpword = cStr(Request.Form("txtpword"))

Set oConn=Server.CreateObject("ADODB.Connection")
 oConn.Open "carldb"
 strSQLStatement = "INSERT INTO REGISTRATION" _
 & "(FNAME, LNAME, ADDRESS, CITY, STATE, ZIP, PHONE, EMAIL, PASSWORD
) " _
 & "SELECT '" & strfname & "' AS FNAME, '"_

 & strlname & "' AS LNAME, '"_
 & stradd & "' AS ADDRESS, '"_
 & strcity & "' AS CITY, '"_
 & strstate & "' AS STATE, '"_
 & strzip & "' AS ZIP, '"_
 & strphone & "' AS PHONE, '"_
 & stremail & "' AS EMAIL, '"_
 & strpword & "' AS PASSWORD ;"

 oConn.Execute(strSQLStatement)

%>

Notice that much of the code for the insert page looks very similar to that of the
query page. We are still declaring the language and including the adovbs.inc file.
Once this is completed you’ll notice something new—that is we are starting off by
declaring variables to capture the information contained in the previous page.
This method is one that refers to ‘state’, which is a topic that will be further
discussed later. For now, think of it like this, in ASP information is passed from
one page to another—BUT if you want to do something else with the data-like DB
insertion or passing it to another page you have to “revive its state.” Perhaps
another way of thinking about is like this—your friend tells you a story and you
understand it perfectly—but if you try to tell it to a third person it might take a little
more explanation. The same holds true for ASP. This is why we create new
variables to capture the data from the registration table page.

To continue, once we have created new variables to capture all of the textbox
data, we recreate our DB connection. After we recreate our connection we need
to rewrite the syntax to allow for DB insertion. The SQL syntax is changed to
inform the DB as to which table we wish to insert a new record, followed by which
fields, and concluded by which values to enter for each field in the record. Once
this is completed we then executed the SQL request. The last item that we utilize
in this page is the Response.Write object in ASP. This Response.Write command
tells the server to print out the value of the variable in the parenthesis. Again, this
is one example of manipulating variable state for our purposes. However, this
method only works in a A-B page communication process. Most common errors
in attempting to execute this process reside in failure to match up correct new
variable names with the textbox variable name with the fields. I know that sounds
a little confusing, but remember you are creating an intermediary that is basically
“the person in the middle”. For example, you know that your registration page
contains a text box called txtfname and your database has a field name call
FNAME. [Remember that I use all CAPS to designate my field names and
lowercase for variables]—now all you have to keep track is that you have created
a temporary variable called strfname that is able to capture the ‘baton or value’
from the registration txtbox field and transfer it to the DB field name.

4. Introduction to the UPDATE Page
This is the point where we left off in our last class session. The UPDATE concept
is actually not much more than the combination of the query and insert pages—
except with a little twist. That is, in our first step we need to query our database
to find a specific record [NOTE: It is true that we could use our UPDATE code to
modify multiple records—but for purposes of our examples we will deal with only
one specific record to keep things simple]. Once we have located this record via
our initial page request through our ASP DB Connection, we need to display the
results—AND also in a form that we can make modifications. The final third page
is where we make the changes to the database. Let’s take a look at how this
works visually:

Page One—the start of the query page—which begins by our request of SOME
UNIQUE FIELD IDENTIFIER—in this case an email address of which there, can
only be one single entry. Note that is page is a simple form with one textbox. The
textbox gets assigned a unique name, which gets passed to Page Two.

 Assignment Seven

 produce a successful asp insert page

Page Two- The successful execution of our query and reproduction of all the
fields associated with the record. At this point we are allowed the capability to
modify the fields as indicated by the textboxes in the page result provided.

Page Three—Once we made modifications we are provided with a confirmation
page as shown below. Note in this page illustration we have utilized the
Response.Write command to show on the screen the results of the changed
data. (It might be a little hard to notice but in this case the first name was
changed from hello to chris, and the last name was changed from g to chandler)

Hopefully, this illustration provides a clear picture of the UPDATE page process.
Let’s take a look at the code for this process—for which we will only discuss
pages two and three.

4. 1 Page Two ASP UPDATE CODE
%@ LANGUAGE="VBSCRIPT" %>--again we declare the code and include the adovbs.inc
file
<!--#include file="adovbs.inc" -->
<%

stremail = cStr(Request.Form("txtemail"))here we create a new variable that
captures the value from the textbox from the previous page
%>
<html>

 <% Set Conn = Server.CreateObject("ADODB.Connection")
 Conn.Open "carldb"
 strsql = "SELECT * from REGISTRATION where EMAIL like '"&stremail&"';"

 response.write strsql&"
"
 set oRs = Conn.Execute(strsql)
 oRs.MoveFirst %> --Notice this is the same ASP code from the query page,
where we create a DB connection, open it, and then use SQL syntax to find a
match to the input from the textbox from page one

<head>
<meta http-equiv="Content-Language" content="en-us">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Enter Your Personal Information</title>
</head>

<body> the following code creates a table within a form to produce the results
of the query in the form of a table with textboxes. The only difference is that
we are not executing a FOR LOOP through the records, we are explicitly
indicating which Field and values to display to the user screen. This is done
by the <%=oRs(“FIELD NAME” %>. –There is a very easy way to create this as
opposed to hard coding the page—simply create a table and insert blank
textboxes. Once the textboxes are created, double click and type the preceding
code (<%=oRs(“FIELD NAME” %>.) under the space title INITIAL VALUE—also FIELD
NAME will vary according to the fields in your DB.

<p>Enter Your Personal
Information</p>
<form method="POST" action="update_response.asp">
 <table border="0" width="100%">
 <tr>
 <td width="50%">ID</td>
 <td width="50%"><input type="text" name="txtID" size="30"
value="<%=oRs("ID")%>"></td>
 </tr>
 <tr>
 <td width="50%">First
Name</td>
 <td width="50%"><input type="text" name="txtfname" size="30"
value="<%=oRs("FNAME")%>"></td>
 </tr>
 <tr>
 <td width="50%">Last
Name</td>
 <td width="50%"><input type="text" name="txtlname" size="30"
value="<%=oRs("LNAME")%>"></td>

 </tr>
 <tr>
 <td width="50%">Address</td>
 <td width="50%"><input type="text" name="txtadd" size="30"
value="<%=oRs("ADDRESS")%>"></td>
 </tr>
 <tr>
 <td width="50%">City</td>
 <td width="50%"><input type="text" name="txtcity" size="30"
value="<%=oRs("CITY")%>"></td>
 </tr>
 <tr>
 <td width="50%">State</td>
 <td width="50%"><input type="text" name="txtstate" size="30"
value="<%=oRs("STATE")%>"></td>
 </tr>
 <tr>
 <td width="50%">Zip</td>
 <td width="50%"><input type="text" name="txtzip" size="30"
value="<%=oRs("ZIP")%>"></td>
 </tr>
 <tr>
 <td width="50%">Phone</td>
 <td width="50%"><input type="text" name="txtphone" size="30"
value="<%=oRs("PHONE")%>"></td>
 </tr>
 <tr>
 <td width="50%">Email</td>
 <td width="50%"><input type="text" name="txtemail" size="30"
value="<%=oRs("EMAIL")%>"></td>
 </tr>
 <tr>
 <td width="50%"><font size="2"
face="Tahoma">Password</td>
 <td width="50%"><input type="text" name="txtpword" size="30"
value="<%=oRs("PASSWORD")%>"></td>
 </tr>
 </table>
 <p align="center"><input type="submit" value="Submit" name="B1"><input
type="reset" value="Reset" name="B2"></p>

</form>

</body>
<% oRs.Close
 Set oRs = Nothing %>

</html>

4. 2 PAGE THREE ASP UPDATE CODE
As you can tell, the ending UPDATE code looks very similar to the INSERT code
discussed earlier. We are still creating new variables and assigning them the
values from the textbox from the preceding page. The only real change is the
SQL syntax—which says UPDATE as opposed to INSERT, but also includes the
WHERE statement. This works exactly likes it sounds. You are telling the DB to
change all of the record fields for one specific entry that matches your UNIQUE
identifier—EMAIL. So be careful you don’t allow the user to make changes to that
field—otherwise your page will not be successful.

<%@ LANGUAGE="VBSCRIPT" %>
<!-- #include file="adovbs.inc" -->
<html>

<head>
<title>Update Successful</title>
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
</head>

<body>

<%

 strfname = cStr(Request.Form("txtfname"))
 strlname = cStr(Request.Form("txtlname"))
 straddress = cStr(Request.Form("txtadd"))
 strcity = cStr(Request.Form("txtcity"))
 strstate = cStr(Request.Form("txtstate"))
 strzip = cStr(Request.Form("txtzip"))
 strphone = cStr(Request.Form("txtphone"))
 stremail = cStr(Request.Form("txtemail"))
 strpword = cStr(Request.Form("txtpword"))

Response.Write(strid)
Response.Write(strfname)
Response.Write(strlname)
Response.Write(straddress)
Response.Write(strcity)
Response.Write(strstate)
Response.Write(strzip)
Response.Write(strphone)
Response.Write(stremail)
Response.Write(strpword)

Set oConn=Server.CreateObject("ADODB.Connection")
 oConn.Open "carldb"
 strSQLStatement = "UPDATE REGISTRATION " _
 & "SET FNAME = '"&strfname&"'," _
 & "LNAME = '"&strlname&"'," _
 & "ADDRESS = '"&straddress&"'," _
 & "CITY = '"&strcity&"',"_
 & "STATE = '"&strstate&"',"_
 & "ZIP = '"&strzip&"',"_
 & "PHONE = '"&strphone&"',"_
 & "EMAIL = '"&stremail&"',"_

 & "PASSWORD = '"&strpword&"'"_
 & "WHERE EMAIL = '"&stremail&"';"
 oConn.Execute(strSQLStatement)
%>

5. Introduction to the DELETE Page
If you have made it successful to this part, then you will enjoy how easy the
DELETE feature is—as it follows the same process as the UPDATE page—the
only difference is simply just a little bit of code—mostly in the form of a word
DELETE.

You should still create an initial page that prompts the user for a specific record
to delete. This can be done by using the same UNIQUE IDENTIFIER and then
displaying the results of that record (same as page two in UPDATE). Now on
Page Three you will want to change your ASP DB code to read as such:

<%
stremail = cStr(Request.Form("txtemail"))

Set oConn=Server.CreateObject("ADODB.Connection")
 oConn.Open "carldb"
 strSQLStatement = "DELETE from REGISTRATION where EMAIL = '"&stremail&"';"
 oConn.Execute(strSQLStatement)
%>

See its that simple! The good news is that many of the other items we will
investigate will turn out to be almost just as easy—as from here on out we will
continue to return to the main ASP functions of retrieving information from a
database and then manipulating the values for our unique specific purposes.

6. Introduction to the State Concept
Now that you have down the main ASP DB interaction tools its time to
understand how we can utilize information drawn from one page throughout the
individual’s experience in all of our website pages. This concept is referred to as
‘state’ and was mentioned earlier. Let’s delve down into a deeper discussion.

Assignment Eight
produce a successful asp update
produce a successful asp delete

It's a Fact: The Web Is Stateless
Have you ever wondered what, exactly, happens when you type in a URL into
your browser's Address bar? The Internet is based on a client-server model,
where your Web browser is the client, and the Web server is the server. The

figure on the left provides a graphical
representation of the client-server
model.

In the client-server model, the client
opens up a channel of communication
with the server and requests a
resource. The server receives the
request, locates the resource being
requested, and sends it to the client,
closing the channel of communication.
This is an impersonal transaction

between the client and server. The server does not keep open its channel of
communication with the client. The server is not concerned with whom it has
talked to recently, what it has sent recently, or what it thinks a particular client will
request next. The server does one job, and it does it well: wait for a request from
the client and then process that request.

Due to this impersonal communication between a Web browser and a Web
server, user information is not persisted from one request to another. Imagine
that you wanted to create a form that would query the user for his or her name.
After the user entered his or her name, it would be nice to display a personal
greeting on each Web page on your Web site. To display a personalized
welcome message, you would need some way of remembering each user's
name. Saving such information is referred to as maintaining state, or persisting
state.

Ways to Maintain State
Because the client-server model does not make maintaining state inherently
easy, you must examine some advanced techniques to maintain state. No doubt
you'll find that some of the methods that can be used to persist state seem rather
obtuse.

Later we'll look at how to maintain state by sending state information through the
querystring. Using this approach can lead to a syntactical headache, and you
may find yourself wondering why maintaining state through the querystring
appears to be so confusing. Keep in mind that the client-server model does not
lend itself to state persistence; therefore, some methods of maintaining state can
be unwieldy. Thankfully, ASP provides some built-in objects and collections to
help maintain state such as cookies and sessions. We will discuss these in our
next meeting.

7. Conclusion
By now you should have created a successful ASP Query, INSERT, UPDATE,
and DELETE page. You should also have an understanding of the concept of
state so that when we meet again you’ll be ready to hit the ground running to
tackle the concepts of querystrings, cookies, and sessions—the basic
underpinnings of the ‘shopping cart’ which fuels the electronic commerce world.
At this point let’s address the deliverables. The original intention was that each
person would hard code the first four tools, QUERY, INSERT, UPDATE, and
DELETE. After successful completion of these tasks, each person would then
replicate these pages towards their final project. In terms of assignment
submission, you can select to either just replicate the pages provided or
manipulate them towards your final project. It is your decision, however, you are
better served by selecting the latter. Either way please email me the exact URL
to check your assignment submissions.

I would also like to remind you to take advantage of the files that I have given to
you—as you can gain a great deal by unzipping the files and placing them into
your web. The only changes you will have to make is to copy the DB files from
my database into yours, and then of course changing the DSN call. This way you
will have a full working ASP site in which to emulate your final project from. I
understand that I presented you with a great deal of material but ideally when we
meet again you’ll have all the assignments completed. If not, no worries, we can
work from there, but hopefully this module has been useful to you.

Best,

Carl
Deliverables

 Assignment 6

 produce a successful asp query page
produce a successful page with includes
create an additional query page that only returns one or two field values

 Assignment Seven

 produce a successful asp insert page

 Assignment Eight

 produce a successful asp update page
produce a successful asp delete page

