The Relational Model
and Normalization

Chapter Objectives

® To understand basic relational terminology m To be able to identify possible insertion, deletion, and
m To understand the characteristics of relations update anomalies in a relation
m To understand alternative terminology used in describing ® To be able to place a relation into BCNF normal form
the relational model . - m To understand the special importance of domain/key
m To be able to identify functional dependencies, normal form
determinants, and dependent attributes m To be able to identify multivalued dependencies
m To identify primary, candidate, and composite keys m To be able to place a relation in fourth normal form

As we discussed in Chapter 1, databases arise from three sources: from exist-
ing data, from the development of new information systems, and from the redesign

- of existing databases. In this chapter and the next, we consider the design of data-
bases from existing data, such as data from spreadsheets or extracts of existing
databases. -

The premise of Chapters 3 and 4 is that you have received one or more tables
of data from some source that are to be stored in a new database. The question is:
Should this data be stored as is, or should it be transformed in some way before it is
stored? For example, consider the two tables in the top part of Figure 3-1. These are
the SKU_DATA and ORDER_ITEM tables extracted from the Cape Codd Outdoor
Sports database as used in the database in Chapter 2. '

You can design the new database to store this data as two separate tables, or
you can join the tables together and design the database with just one table. Each
alternative has advantages and disadvantages. When you make the decision to usé
one design, you obtain certain advantages at the expense of certain costs. The pur-
pose of this chapter is to help you understand those advantages and costs.

Such questions do not seem difficult, and you may be wondering why we need
two chapters to answer them. In truth, even a single table can have surprising com-
plexity. Consider, for example, the table in Figure 3-2, which shows sample data

146

FIGURE 3-1
How Many Tables?

FIGURE 3-2

. PRODUCT_BUYER—

A Very Strange Table

CHAPTER 3 The Relational Model and Normalization

ORDERL_ITEM

OrderMumber SKU Quartity

i,

Price ExtendedPrice

1 {000 201000 1 30000 30000
2 TH000 202000 1 13000 13000
32000 101100 4 5000 20000
4 2000 101200 2 5000 10000
5 13000 100200 1 30000 30000
6 13000 101100 2 5000 70000
7 3000 101200 1 5000 5000

SKU_DATA

! SKU SKU_Description Department Buyer

% -

2

3

§ Std. Seuba Tank, Dask Groen

7 10100 Dive Mask,SralCar

§ 1101200 Dive Mask, Med Clear

§ 201000 HofdomeTent

10 202000 Hok-dome Tent Vestibue _

11 203000 Haf dome Tent Vesibue -Wide Camping (Ginc

12 301000 Lght FyCimbing Hamess Cimbing Jem
SKU_ITEM ‘

OrderMumber ~ SKU Quartity Price SKU_Description Depatment Buyer

1 {00 1201000 17 30000 Hafdome Tent Camping Gindylo
2 Hooa i 202000 1 13000 Haffdome Tent Vestbule Camping Cindyla
13 20m 101100 4 5000 Dive Mask, Smal Clear Water Sparts | Nancy Meyers
|4 200 mze 2 5000 Dive Mask. Med Clear Water Spotts Nancy Meyers
{5 3000 100200 1 30000 Std. Scuba Tank, Magenta Water Spoits Pete Hansen
{6 3000 101100 2 5000 Dive Mask, Smal Clear Water Sports~ Nancy Meyers
‘7 3000 101200 1 5000 Dive Mask, Med Clear Water Spots blancy Meyers

PRODUCT_BUYER

[T = S« LIS =

P e
d= W M — D

—_
h n

—
=]

Buyertlame SKU_Managed CollegeMajor

Pete Hansen : 100100
Pete Hansen 100200
PeteHansen 100300
Pete Hansen 100400
ﬁPaewmﬁmf”imﬂm :
PeteHansen 100600
Nancy Meyers | 101100
Nancy Meyers 101100
Nancy Meyers | 101200
Nancy Meyers 101200
Cndylo 201000
Cindylo 202000
Cndylo 203000
Jenny Martin 301000
Jenny Matin 301000
Jenny Martin 302000
Jenny Matin 302000

. Business Admiistraion |

147

148

PART 2 Database Design

extracted from a corporate database. This simple table has three columns: the buy-
er's name, the SKU (stock keeping unit) of the products that the buyer purchases,
and the names of the buyer’s coliege major(s). Buyers manage more than one SKU,
and they can have multiple college majors.

To understand why this is an odd table, suppose that Nancy Meyers is assigned a
new SKU, say 101300. What addition should we make to this table? Clearly, we need
to add a row for the new SKU, but if we add just one row, say the row (‘Nancy Meyers,
101300, ‘Art), it will appear that she manages product 101300 as an Art major, but not
as an Info Systems major. To avoid such an illogical state, we need to add two raws:
(‘Nancy Meyers’, 101300, ‘Art’) and (‘Nancy Meyers’, 101300, “info Systems’).

This is a strange requirement. Why should we have to add two rows of data simply
to record the fact that a new SKU has been assigned to a buyer? Further, if we assign the
product to Pete Hansen instead, we would only have to add one row, but if we assigned
the product to a buyer who had four majors, we would have to add four new rows.

The more one thinks about the table in Figure 3-2, the stranger it becomes.
What changes should we make if SKU 101100 is assigned to Pete Hansen? What
changes should we make if SKU 100100 is assigned to Nancy Meyers? What
should we do if all the SKU values in Figure 3-2 are deleted? Later in this chapter,
you will learn that these problems arise because this table has a problem called a
multivalued dependency. Even better, you will learn how to remove that problem.

Tables can have many different patterns; some pattemns are susceptible to seri-
ous problems and other patterns are not. Before we can address this guestion,
however, you need to learn some basic terms.

Relational _Model Terminology

Figure 3-3 lists the most important terms used by the relational model. By the time you fin-
ish Chapters 3 and 4, you should be able to define each of these terms and explain how
each pertains to the design of relational databases. Use this list of terms as a check on your
comprehension.

Relations

So far, we have used the terms table and relation interchangeably. In fact, a relation is a special
case of a table. This means that all relations are tables, but not all tables are relations. Codd
defined the characteristics of a relation in his 1970 paper that laid the foundation for the
relational model.! Those characteristics are summarized in Figure 3-4.

B-THE WAY In Figure 3-4 and in this discussion, we use the term entity to mean some

identifiable thing. A customer, a salesperson, an order, a part, and a lease
are all examples of what we mean by an entity. When we introduce the entity-relationship
model in Chapter 5, we will make the definition of entity more precise. For now, just
think of an entity as some identifiable thing that users want to track.

IE. E Codd, “A Relational Model of Data for Large Shared Data Banks,” Communications of the ACM, June
1970, pp. 377-387. A downloadable copy of this paper in PDF format is available at hitp//dl.acm.org/citation
m?id=362685.

FIGURE 3-3

Important Relational
Model Terms

FIGURE 3-4

Characteristics of
Relations

CHAPTER 3 The Relational Model and Normalization 149

mportant Relatio

Relation

Functional dependency

Determinant

Candidate key

Composite key

Primary key

Surrogate key

Foreign key

Referential integrity constraint

Normal form

Multivalued dependency

Characteristics of Relations

A relation has a specific definition, as shown in Figure 3-4, and for a table to be a relation,
the criteria of this definition must be met. First, the rows of the table must store data about an
entity, and the columns of the table must store data about the characteristics of those entities.
Next, the names of the columns are unique; no two columns in the same relation may have
the same name.

Further, in a relation, all of the values in a column are of the same kind. If, for example,
the second column of the first row of a relation has FirstName, then the second column of
every row in the relation has FirstName. This is an important requirement that is known as
the domain integrity constraint, where the term domain means a grouping of data that
meets a specific type definition. For example, FirstName would have a domain of names
such as Albert, Bruce, Cathy, David, Edith, and so forth, and all values of FirstName must come
from the names in that domain. The EMPLOYEE table shown in Figure 3-5 meets these cri-
teria and is a relation.

__ Characteristics of Relations S

Rows contain data about an entity.

Columns contain data about attributes of the entities.

All entries in a column are of the same kind.

Each column has a unique name.

Celis of the table hold a single value.

The order of the columns is unimportant.

The order of the rows is unimportant.

No two rows may be identical. -

150

PART 2 Database Design

EmployeeNumber

FirstName

LastName

Department

EmailAddress

Phone

100

Jerry

Johnson

Accounting

Jd@somewhere.com

518-834-1101

200

Mary

Abernathy

Finance

MA@somewhere.com

518-834-2101

300

Liz

Smathers

Finance

LS@somewhere.com

518-834-2102

400

Tom

Caruthers

Accounting

TC@somewhere.com

518-834-1102

500

Tom

Jackson

Production

TJ@somewhere.com

518-834-4101

600

Eleanore

Caldera

Legal

EC@somewhere.com

518-834-3101

700

Richard

Bandalone

Legal

RB@somewhere.com

518-834-3102

FIGURE 3-5

Sample EMPLOYEE
Relation

FIGURE 3-6

Nonrelational Table—
Multiple Entries per Gell

BY THE WAY

Columns in different relations may have the same name. In Chapter 2, for

example, two relations had a column named SKU. When there is risk of
confusion, we precede the column name with the relation name fallowed by a period.
Thus, the name of the SKU column in the SKU_DATA relation is SKU_DATA.SKU, and
column C1 of relation R1 is named R1.C1. Because relation names are unique within a
database and because column names are unique within a relation, the combination of
relation name and column name uniquely identifies every column in the database.

Each cell of a relation has only a single value or item; multiple entries are not allowed.
The table in Figure 3-6 is not a relation because the Phone values of employees Caruthers
and Bandalone store multiple phone numbers.

In a relation, the order of the rows and the order of the columns are immaterial. No

information can be carried by the ordering of rows or columns. The table in Figure 3-7 is not
arelation because the entries for employees Caruthers and Caldera require a particular row
arrangement. If the rows in this table were rearranged, we would not know which employee
has the indicated Fax and Home numbers.

Finally, according to the last characteristic in Figure 3-4, for a table to be a relation, no
two rows can be identical. As you learned in Chapter 2, some SQL statements do produce
tables with duplicate rows, In such cases, you can use the DISTINCT keyword to force
uniqueness. Such row duplication occurs only as a result of SQL manipulation. Tables that

you design to be stored in the database should never contain duplicate rows.

EmployeeNumber FirstName | LastName | Department EmailAddress Phone
100 Jerry Johnson Accounting JJ@somewhere.com 518-834-1101
200 Mary Abemnathy | Finance MA@somewhere.com | 518-834-2101
300 Liz Smathers Finance LS@somewhere.com | 518-834-2102
400 Tom Caruthers Accounting TC@somewhere.com | 518-834-1102,
518-834-1191,
518-834-1192
500 Tom Jackson Production TJ@somewhere.com | 518-834-4101
600 Eleanore Caldera Legal EC@somewhere.com | 518-834-3101
700 Richard Bandalone | Legal RB@somewhere.com | 518-834-3102,
518-834-3191

sy

CHAPTER 3 The Relational Model and Normalization 151
EmployeeNumber | FirstName | LastName | Department EmailAddress P.hong

100 Jerry Johnson Accounting JJ@somewhere.com 518-834-11 O‘Il
200 Mary Abernathy | Finance MA@somewhere.com | 518-834-2101
300 Liz Smathers Finance LS@somewhere.com | 518-834-2102
400 Tom Caruthers Accounting TC@somewhere.com | 518-834-1102
Fax: | 518-834-9911

Home: | 518-723-8795

500 Tom Jackson Production TJ@somewhere.com | 518-834-4101
600 Eleanore Caldera Legal EC@somewhere.com | 518-834-3101
Fax: | 518-834-9912

Home: | 518-723-7654

700 Richard Bandalone | Legal RB@somewhere.com | 518-834-3102

FIGURE 3-7

Nonrelational Table—
Order of Rows Matters
and Kind of Column
Entries Differs in Email

FIGURE 3-8

Relation with Variable-
Length Column Values

Do not fall into a common trap. Even though every cell of a relation must

: have a single value, this does not mean that all values must have the same
length. The table in Figure 3-8 is a relation even though the length of the Comment col-
umn varies from row to row. It is a relation because, even though the comments have
different lengths, there is only one comment per cell.

Alternative Terminology

As defined by Codd, the columns of a relation are called attributes and the rows of a rela-
tion are called tuples (rhymes with “couples”). Most practitioners, however, do not use these
academic-sounding terms and instead use the terms column and row. Also, even though a

EmployeeNumber | FirstName | LastName | Department EmailAddress Phone Comments

100 Jerry Johnson Accounting | JJ@somewhere.com | 518-834-1101 | Joined the
Accounting
Department in
March after
completing his
MBA. Will take the
CPA exam this fall.

200 Mary Abernathy | Finance MA@somewhere.com | 518-834-2101

300 Liz Smathers | Finance LS@somewhere.com | 518-834-2102

400 Tom Caruthers | Accounting | TC@somewhere.com | 518-834-1102

500 Tom Jackson Production | TJ@somewhere.com | 518-834-4101

600 Eleanore Caldera Legal EC@somewhere.com | 518-834-3101

700 Richard Bandalone | Legal RB@somewhere.com | 518-834-3102 | Is a full-time
consultant to Legal
on a retainer basis.

152

FIGURE 3-9

Three Sets of Equivalent
Terms

PART 2 Database Design

Relation Attribute Tuple

File Field Record

table is not necessarily a relation, most practitioners mean relation when they say table. Thus,
in most conversations the terms relation and table are synonymous. In fact, for the rest of this
book table and relation will be used synonymously.

Additionally, a third set of terminology can be used. Some practitioners use the terms file,
field, and record for the terms table, colurm, and row, respectively. These terms arose from tradi-
tional data processing and are common in connection with legacy systems. Sometimes people
mix and match these terms. You might hear someone say, for exemple, that a relation has a cer-
tain column and contains 47 records. These three sets of terms are summarized in Figure 3-9.

To Key, or Not to Key—That Is the Question!

Again as defined by Codd, the rows of a relation must be unique (no two rows may be identi-
cal), but there is no requirement for a designated primary key in the relation. You will recall
that in Chapter 1, we described a primary key as a column (or columns) with a set of values
that uniquely identify each row. :

However, the requirement that no two rows be identical implies that a primary key can be
defined for the relation. Further, in the “real world” of databases, every relation (or table as
they are more often referred to in daily use) does have a defined primary key.

To understand how to designate or assign a primary key for a relation, we need to learn
about the different types of keys used in relational databases, and this means we need to
learn about functional dependencies, which are the foundation upen which keys are built.
We will then discuss specifically how to assign primary keys in relations.

Functional Dependencies

Functional dependencies are the heart of the database design process, and it is vital for you
to understand them. We will first explain the concept in general terms and then examine
two examples, We will then be able to define exactly what a functional dependency is.

We begin with a short excursion into the world of algebra. Suppose you are buying boxes
of cookies and someone tells you that each box costs $5.00. With this fact, you can compute
the cost of several boxes with the following formula:

CookieCost = NumberOfBoxes X $5

A more general way to express the relationship between CookieCost and NumberOfBoxes
is to say that CookieCost depends on NumberOfBoxes. Such a statement tells us the character
of the relationship between CookieCost and NumberOfBoxes, even though it doesn't give
us the formula. More formally, we can say that CookieCost is functionally dependent on
NumberOfBoxes. Such a statement can be written as:

NumberOfBoxes — CookieCost

This expression can be read as “NumberOfBoxes determines CookieCost.” The variable
on the left, here NumberOfBoxes, is called the determinant.- '

Using another formula, we can compute the extended price of a part order by multiply-
ing the quantity of the item by its unit price, or:

ExtendedPrice = Quantity X UnitPrice

In this case, we say that ExtendedPrice is functionally dependent on Quantity and
UnitPrice, or:

(Quantity, UnitPrice) — ExtendedPrice

Here the determinant is the composite (Quantity, UnitPrice).

Siap e s

it 4o

CHAPTER 3 The Relational Model and Normalization 7 153

Functional Dependencies That Are Not Equations |
In general, a functional dependency exists when the value of one or more attributes
determines the value of another attribute. Many functional dependencies exist that do not
involve equations.

Consider an example. Suppose you know that a sack contains red, blue, or yellow
objects. Further, suppose you know that the red objects weigh 5 pounds, the blue objects
weigh 5 pounds, and the yellow objects weigh 7 pounds. If a friend looks into the sack, sees

an object, and tells you the color of the object, you can tell her the weight of the object. We
can formalize this as:

ObjectColor — Weight

Thus, we can say that Weight is functionally dependent on ObjectColor and that ObjectColor
determines Weight. The relationship here does not involve an equation, but the functional
dependency holds. Given a value for ObjectColor, you can determine the object’s weight.

~ If'we also know that the red objects are balls, the blue objects are cubes, and the yellow
objects are cubes, we can also say:

ObjéctColOr — Shape
Thus, ObjectColor determines Shape. We can put these two together to state:
ObjectColor — (Weight, Shape)

Thus, ObjectColor determines Weight and Shape.
Another way to represent these facts is to put them into a table:

OblectColor | Weight | Shape
Red . 5 Ball o .
Blue 5 Cube '
Yellow 7 Cube

This table meets all of the conditions listed in Figure 3-4, and therefore it is a relation.
You may be thinking that we performed a trick or sleight of hand to arrive at this relation,
but in truth, the only reason for having relations is to store instances of functional dependencies.
If there were a formula by which we could take ObjectColor and somehow compute
Weight and Shape, then we would not need the table. We would just make the computation.
Similarly, if there were a formula by which we could take EmployeeNumber and compute
EmployeeName and HireDate, then we would not need an EMPLOYEE relation. However,
because there is no such formula, we must store the combinations of EmployeeNumber,
EmployeeName, and HireDate in the rows of a relation.

Perhaps the easiest way to understand functional dependencies is:
If I tell you one specific fact, can you respond with a unique associated

BY THE WAY
fact?

Using the earlier table, if | tell you that the ObjectColor is Red, can you uniguely tell

me the associated Shape? Yes, you can, and it is Ball. Therefore, ObjectColor deter-

mines Shape, and a functional dependency exists with ObjectColor as the determinant.

Now, if | tell you that that the Shape is Cube, can you tell me the uniguely associated

ObjectColor? No, you cannot because it could be either Blue or Yellow. Therefore, Shape
does not determine ObjectColor, and ObjectColor is not functionally dependent on Shape.

154

PART 2 Database Design

Composite Functional Dependencies
The determinant of a functional dependency can consist of more than one attribute. For
example, a grade in a class is determined by both the student and the class, or:

(StudentNumber, ClassNumber) — Grade

In this case, the determinant is called a composite determinant.

Notice that both the student and the class are needed to determine the grade. In general,
if (A, B) — C, then neither A nor B will determine C by itself. However, if A — (B,), thenitis
true that A — B and A — C (this is known as the decomposition rule). Work through exam-
ples of your own for both of these cases so that you understand why this is true. Also note that if
A B and A — C, then it is true that A — (B, C) (this is known as the union rule).

Finding Functional Dependencies

To fix the idea of functional dependency in your mind, consider what functional dependen-
cies exist in the SKU_DATA and ORDER_ITEM tables in Figure 3-1.

Functional Dependencies in the SKU_DATA Table
To find functional dependencies in a table, we must ask “Does any column determine the value
of another column?” For example, consider the values of the SKU_DATA table in Figure 3-1:

SKU SKU_Description Dieparment Buver
1 700700} Sid. Scuba Tark, Yelow | Vister Sporis | Pete Hansen
2 100200 Sd.ScubaTank Mogerts WaferSpods Pete Hansen
4 100400 Sid ScubaTerk,DakBle WalerSpods | Pefe Hansen
: ._ e
6 Water Sports Pete Hansen
7 . WaterSpois Nancy Meyers
8 Water Sports | Nancy Meyers
= e

Consider the last two columns. If we know the value of Department, can we deter-
mine a unique value of Buyer? No, we cannot, because a Department may have more than
one Buyer. In these sample data, "Water Sports’is associated with Pete Hansen and Nancy
Meyers. Therefore, Department does not functionally determine Buyer.

What about the reverse? Does Buyer determine Department? In every row, for a given
value of Buyer, do we find the same value of Department? Every time Jerry Martin appears,
for example, is he paired with the same department? The answer is yes. Further, every
time Cindy Lo appears, she is paired with the same department. The same is true for the
other buvers. Therefore, assuming that these data are representative, Buyer does determine
Department, and we can write:

Buyer — Department

Does Buyer determine any other column? If we know the value of Buyer, do we know
the value of SKU? No, we do not. because a given buyer has many SKUs assigned to him or her.
Does Buyer determine SKU_Description? No, because a given value of Buyer occurs with
many values of SKU_Description.

CHAPTER 3 The Relational Model and Normalization 155

m As stated, for the Buyer — Department functional dependency, a Buyer is
. paired with one and only one value of Department. Notice that a buyer can
appear more than once in the table, but, if so, that buyer is always paired with the same
department. This is true for all functional dependencies. If A — B, then each value of
A will be paired with one and only one value of B. A particular value of A may appear
more than once in the relation, but, if so, it is always paired with the same value of B.

Note, too, that the reverse is not necessarily true. If A — B, then a value of B may be
paired with many values of A.

What about the other columns? It turns out that if we know the value of SKU, we also
know the values of all of the other columns. In other words:

SKU — SKU_Description

because a given value of SKU will have just one value of SKU_Description. Next, |
SKU — Department

because a given value of SKU will have just one value of Department. And, finally,
S5KU — Buyer

because a given value of SKU will have just one value of Buyer.
We can combine these three statements as:

SKU — (SKU_Description, Department, Buyer)

For the same reasons, SKU_Description determines all of the other columns, and we
can write:

SKU_Description — (SKU, Department, Buyer)
In summary, the functional dependencies in the SKU_DATA table are:

SKU — (SKU_Description, Department, Buyer)
SKU_Description — (SKU, Department, Buyer)
Buyer — Department

You cannot always determine functional dependencies from sampie data.

: You may not have any sample data, or you may have just a few rows that |
are not representative of all of the data conditions. In such cases, you must ask the
users who are experts in the application that creates the data. For the SKU_DATA
table, you would ask questions such as, “Is a Buyer always associated with the same

Department?” and “Can a Department have more than one Buyer?” In most cases,

answers to such questions are more reliable than sample data. When in doubt, trust
the users.

Functional Dependencies in the ORDER_ITEM Table ;
Now consider the ORDER_ITEM table in Figure 3-1. For convenience, here is a copy of the
data in that table:

156

PART 2 Database Design

| OrderMumber ~ SKU Quartity FPrice ExtendedPrice
| R S

2 i 202000 1 130.00 13000

3 200 101100 4 5000 20000

4 (2000 10120 2 5000 (10000
S a0 Toww 1 300 X000

6 3000 10100 2 5000 | 100.00
7300 0 01200 1 5000 5000

What are the functional dependencies in this table? Start on the left. Does OrderNumber
determine another column? It does not determine SKU because several SKUs are associ-
ated with a given order. For the same reasons, it does not determine Quantity, Price, or
ExtendedPrice.

What about SKU? SKU does not determine OrderNumber because several OrderNumbers
are associated with a given SKU. It does not determine Quantity or ExtendedPrice for the
same reason.

What about SKU and Price? From this data, it does appear that

SKU — Price

but that might not be true in general. In fact, we know that prices can change after an order
has been processed. Further, an order might have special pricing due to a sale or promotion.
To keep an accurate record of what the customer actually paid, we need to associate a par-
ticular SKU price with a particular order. Thus:

(OrderNumber, SKU) — Price

Considering the other columns, Quantity, Price, and ExtendedPrice do not determine
anything else. You can decide this by looking at the sample data. You can reinforce this
conclusion by thinking about the nature of sales. Would a Quantity of 2 ever determine an
OrderNumber or an SKU? This makes no sense. At the grocery store, if I tell you I bought two
of something, you have no reason to conclude that my OrderNumber was 1010022203466
or that I bought carrots. Quantity does not determine OrderNumber or SKU.

Similarly, if I tell you that the price of an item was $3.99, there is no logical way to con-
clude what my OrderNumber was or that I bought a jar of green olives. Thus. Price does not
determine OrderNumber or SKU. Similar comments pertain to ExtendedPrice. It turns out
that no single column is a determinant in the ORDER_ITEM table.

What about pairs of columns? We already know that

(OrderNumber, SKU) — Price

Examining the data, (OrderNumber, SKU) determines the other two columns as well. Thus:

(OrderNumber, SKU) — (Quantity, Price, ExtendedPrice)

This functional dependency makes sense. It means that given a particular order and a par-

ticular item on that order, there is only one quantity, one price, and one extended price.
Notice, too, that because ExtendedPrice is computed from the formula ExtendedPrice =

(Quantity * Price) we have:

(Quantity, Price) — ExtendedPrice

In summary, the functional dependencies in ORDER_ITEM are:

s o

CHAPTER 3 The Relational Model and Normalization 157

(OrderNumber, SKU) — (Quantity, Price, ExtendedPrice)
(Quantity, Price) - ExtendedPrice

No single skill is more important for designing databases than the ability to identify functional
dependencies. Make sure you understand the material in this section. Work through Review
Questions 3.58 and 3.59, the Regional Labs case questions, and The Queen Anne Curiosity Shop
and Morgan Importing project questions at the end of the chapter. Ask your instructor for help if
necessary. You rmust understand functional dependencies and be able to work with them.

When Are Determinant Values Unique?

In the previous section, you may have noticed an irregularity. Sometimes the determinants of
a functional dependency are unique in a relation, and sometimes they are not. Consider the
SKU_DATA relation, with determinants SKU, SKU_Description, and Buyer. In SKU_DATA,
the values of both SKU and SKU_Description are unique in the table. For example, the SKU
value 100100 appears just once. Similarly, the SKU_Description value ‘Half-‘dome Tent’
occurs just once. From this, it is tempting to conclude that values of determinants are always
unique in a relation. However, this is not true.

For example, Buyer is a determinant, but it is not unique in SKU_DATA. The buyer
‘Cindy Lo” appears in two different rows. In fact, for these sample data, all of the buyers occur
in two different rows. :

In truth, a determinant is unique in a relation only if it determines every other column
in the relation. For the SKU DATA relation, SKU determines all of the other columns. Simi-
larly, SKU_Description determines all of the other columns. Hence, they both are unique.
Buyer, however, only determines the Department column. It does not determine SKU or
SKU_Description.

The determinants in ORDER_ITEM are (OrderNumber, SKU) and (Quantity, Price).
Because (OrderNumber, SKU) determines all of the other columns, it will be unique in the
relation. The composite (Quantity and Price) only determines ExtendedPrice. Therefore, it
will not be unique in the relation.

This fact means that vou cannot find the determinants of all functional dependencies sim-
ply by looking for unique values. Some of the determinants will be unique, but some will not.
Instead, to determine if column A determines column B, look at the data and ask, “Every time
a value of column A appears, is it matched with the same value of Column B?" If so, it can be a
determinant of B. Again, however, sample data can be incomplete, so the best strategies are to
think about the nature of the business activity from which the data arise and to ask the users.

Keys

The relational model has more keys than a locksmith. There are candidate keys, composite
keys, primary keys, surrogate keys, and foreign keys. In this section, we will define each of
these types of keys. Because key definitions rely on the concept of functional dependency,
make sure you understand that concept before reading on.

In general, a key is a combination of one or more columns that is used to identify par-
ticular rows in a relation. Keys that have two or more columns are called composite keys.

Candidate Keys

A candidate key is a determinant that determines all of the other columns in a relation.
The SKU_DATA relation has two candidate keys: SKU and SKU_Description. Buyer is a
determinant, but it is not a candidate key because it determines only Department.

The ORDER_ITEM table has just one candidate key: (OrderNumber, SKU). The other
determinant in this table, (Quantity, Price), is not a candidate key because it determines only
ExtendedPrice.

Candidate keys identify a unique row in a relation. Given the value of a candidate key, we
can find one and only one row in the relation that has that value. For example, given the SKU
value of 100100, we can find one and only one row in SKU_DATA. Similarly, given the Order-
Number and SKU values (2000, 101100), we can find one and only one row in ORDER ITEM.

158 PART 2 Database Design

Primary Keys

When designing a database, one of the candidate keys is selected to be the primary
key. This term is used because this key will be defined to the database management sys-
tem (DBMS), and the DBMS will use it as its primary means for finding rows in a table.
A table has only one primary key. The primary key can have one column, or it can be a
composite.

In this text, to clarify discussions we will sometimes indicate table structure by
showing the name of a table followed by the names of the table’s columns enclosed in
parentheses. When we do this, we will underline the column(s) that comprise the pri-
mary key. For example, we can show the structure of SKU_DATA and ORDER_ITEM as
follows:

SKU_DATA (SKU, SKU_Description, Department, Buyer)
ORDER _ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

This notation indicates that SKU is the primary key of SKU_DATA and that (OrderNumber,
SKU) is the primary key of ORDER_ITEM.

In order to function properly, a primary key, whether it is a single column or a composite
key, must have unique data values inserted into every row of the table. Although this fact may
seem obvious, it is significant enough to be named the entity integrity constraint andisa
fundamental requirement for the proper functioning of a relational database.

m What do you do if a table has no candidate keys? In that case, define the
. primary key as the collection of all of the columns in the table. Because
there are no duplicate rows in a stored relation, the combination of all of the columns
of the table will always be unique. Again, although tables generated by SQL manipula-
tion may have duplicate rows, the tables that you design to be stored should never be

constructed to have data duplication. Thus, the combination of all columns is always a
candidate key.

Surrogate Keys

A surrogate key is an artificial column that is added to a table to serve as the primary key.
The DBMS assigns a unique value to a surrogate key when the row is created. The assigned
value never changes. Surrogate keys are used when the primary key is large and unwieldy.
For example, consider the relation RENTAL_PROPERTY:

RENTAL_PROPERTY (Street, City, State/Province, ZIP/PostalCode, Country,
Rental_Rate)

The primary key of this table is (Street, City, State/Province, ZIP/PostalCode, Country). As we
will discuss further in Chapter 6, for good performance, a primary key should be short and.
if possible, numeric. The primary key of RENTAL_PROPERTY is neither.

In this case, the designers of the database would likely create a surrogate key. The struc-
ture of the table would then be:

RENTAL_PROPERTY (PropertyID, Street, City, State/Province, ZIP/ PostalCode,
Country, Rental Rate)

The DBMS can then be used to assign a numeric value to PropertylD when a row is created
(exactly how this is done depends upon which DBMS product is being used). Using that key
will result in better performance than using the original key. Note that surrogate key values
are artificial and have no meaning to the users. In fact, surrogate key values are normally hid-
den in forms and reports.

e it i o e s

CHAPTER 3 The Relational Model and Normalization 159

For another example, let’s look at the Cape Codd BUYER table we created in Chapter 2.
The structure of the BUYER table is: '

BUYER (BuyerName, Department, Position, Supervisor)

The primary key is BuyerName, Supervisor is a foreign key referencing BuyerName in a
recursive relationship as discussed in Chapter 2, and the data in the table is:

Buyertlame Department Posttion Supervisor

i Cindy Lo : Purchasing BuyerZ Mary Smith

mea;m i e e
Mary Smith Purchasing Manager NULL
Nancy Meyers Purchasing Buyer1 Pete Hansen

Pete Hansen Furchasing Buyerd Mary Smith

N o o R —

But a primary key must be unique, and BuyerName is only unique because we have
so few records in this table—for example, Mary Smith is a common name, and we could
easily have multiple Mary Smiths working at Cape Codd as buyers. Another problem
is that the BuyerName column actually holds two pieces of data: the Buyer’s first name
and the Buyer’s last name. Good database design dictates that we should split this
column into two separate columns: BuyerFirstName and BuyerLastName. Using these
two columns as a composite primary key doesn't solve the problem of possible name
duplication.

The solution is to use a surrogate primary key and split BuyerName into its components.
Thus we get a revised structure of the BUYER table as:

BUYER (BuyerID, BuyerFirstName, BuyerLastName, Department, Position,
Supervisor)

Note that because we are now using the surrogate primary key BuyerID, the Supervisor
column must now hold the numeric values that point to the appropriate BuyerID! Our data
in the table now looks like this:

§

BuyerlD BuyerFirstMame BuyerlastMame Depatment Postion Supervisor
: 1 e - — Managerw -
i Em‘ Pete Hansen _' Purchasing Buyerd 1
13 3 Nancy Meyers - Purchasing Buyer 1)
4 4 Cindy Lo ' Purchasing BuyerZ 1
5 5 Jeny Martin Puchasing Buyerl 4

For the time being, we will continue to use the original BUYER table as the basis
for our discussions in this chapter. The techniques we would use to convert the original

BUYER table into the redesigned BUYER table are discussed in Chapter 8 on database
redesign.

Foreign Keys

A foreign key is a column or composite of columns that is the primary key of a table other
than the one in which it appears. The term arises because it is a key of a table for-
eign to the one in which it appears as the primary key. In the following two tables,

_?-;‘

160 PART 2 Database Design

DEPARTMENT.DepartmentName is the primary key of DEPARTMENT, and EMPLOYEE
Department is a foreign key. In this text, we will show foreign keys in italics:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, DepartmentPhone)
EMPLOYEE (EmployeeNumber, LastName, FirstName, Department)

Foreign keys express relationships between rows of tables. In this example, the foreign
key EMPLOYEE.Department stores the relationship between an employee and his or her
department. Note that the foreign key does not need to have the same name as the primary
key it references—it only has to contain the same type of datal

Consider the SKU_DATA and ORDER_ITEM tables. SKU_DATA.SKU is the primary
key of SKU_DATA, and ORDER ITEM.SKU is a foreign key.

SKU_DATA (SKU, SKU_Description, Department, Buyer)
ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

Notice that ORDER_ITEM.SKU is both a foreign key and part of the primary key of ORDER _

ITEM. This condition sometimes occurs, but it is not required. In the earlier example,

_ EMPLOYEE.Department is a foreign key, but it is not part of the EMPLOYEE primary key. You
il will see some uses for foreign keys later in this chapter and the next, and you will study them

' at length in Chapter 6.

In most cases, we need to ensure that the values of a foreign key match a valid value of
a primary key. For the SKU_DATA and ORDER_ITEM tables, we need to ensure that all of
the values of ORDER_ITEM.SKU match a value of SKU_DATA.SKU. To accomplish this, we
create a referential integrity constraint, which is a statement that limits the values of the
foreign key. In this case, we create the constraint:

SKU in ORDER_ITEM must exist in SKU in SKU_DATA

This constraint stipulates that every value of SKU in ORDER _ITEM must match a value of
SKU in SKU_DATA,

Note that we can have a referential integrity constraint on a recursive relationship
! between two columns in the same table. The referential integrity constraint for the rede-
signed BUYER table (the one with BuyerID) discussed earlier in this chapter is:

Supervisor in BUYER must exist in BuyerID in BUYER

BY THE WAY While we have defined a referential integrity constraint to require a cor-
responding primary key value in the linked table, the technical definition

i of the referential integrity constraint allows for one other option—that the foreign key

- cellin the table is empty and does not have a value.” If a cell in a table does not have a
value, it is said to have a null value—for example, see the null value for Mary Smith’s
Supervisor in the BUYER tables earlier (where it appears in all uppercase as NULL.) We
will discuss null values in Chapter 4.

Except for recursive relationships like the one in the BUYER table, it is difficult to
imagine a foreign key having null values in a real database when the referential integrity
constraint is actually in use, and we will stick with our basic definition of the referential
integrity constraint in this book. At the same time, be aware that the complete formal
definition of the referential integrity constraint does allow for null values in foreign key
columns, and our BUYER table data provides one example of how this can happen.

2For example, see the Wikipedia article on referential integrity at http://en.wikipedia.org/wiki/Referential_integrity.

Normal Forms

FIGURE 3-10

The EQUIPMENT_
REPAIR Relation

BY THE WAY We have defined three constraints so far in our discussion:

CHAPTER 3 The Relational Model and Normalization 161

® The domain integrity constraint
m The entity integrity constraint
® The referential integrity constraint

The purpose of these three constraints, taken as a whole, is to create database
integrity, which means that the data in our database will be useful, meaningful data.®

All relations are not equal. Some are easy to process, and others are problematic. Relations
are categorized into normal forms based on the kinds of problems that they have. Knowl-
edge of these normal forms will help you create appropriate database designs. To under-
stand normal forms, we need first to define modification anomalies.

Modification Anomalies

Consider the EQUIPMENT_REPAIR relation in Figure 3-10, which stores data about manu-
facturing equipment and equipment repairs. Suppose we delete the data for repair number
2100. When we delete this row (the second one in Figure 3-10), we remove not only data
about the repair, but also data about the machine itself. We will no longer know, for example,
that the machine was a Lathe and that its AcquisitionCost was 4750.00. When we delete
one row, the structure of this table forces us to lose facts about two different things: a machine
and a repair. This condition is called a deletion anomaly.

Now suppose we want to enter the first repair for a piece of equipment. To enter repair
data, we need to know not just RepairNumber, RepairDate, and RepairCost, but also Item-
Number, EquipmentType, and AcquisitionCost. If we work in the repair department, thisis a
problem because we are unlikely to know the value of AcquisitionCost. The structure of this
table forces us to enter facts about two entities when we just want to enter facts about one.
This condition is called an insertion anomaly.

Finally, suppose we want to change existing data. If we alter a value of RepairNumber,
RepairDate, or RepairCost, there is no problem. But if we alter a value of ItemNumber,
EquipmentType, or AcquisitionCost, we may create a data inconsistency. To see why, suppose
we update the last row of the table in Figure 3-10 using the data (100, Drill Press, 5500,
2500,'08/17/18,275).

Figure 3-11 shows the table after this erroneous update. The drill press has two differ-
ent AcquisitionCosts. Clearly; this is an error. Equipment cannot be acquired at two different

femMNumber EquipmentType AcquistionCost RepairMumber RepairDate RepairCost
1 ! Diill Press 350000 2000 20180505 375.00
3 Lathe 4750.00 2100 180507 25500
3 100 Drill Press 350000 2200 20180613 178.00
4 300 Mill 27300.00 2300 20180618 1875.00
5 100 Dril Press 3500.00 2400 20180705 0.00
& 100 Dril Press 3500.00 2500 20180817 27500

3For more information and discussion, see the Wikipedia article on database integrity at hitp//enwikipedia
.org/wiki/Database_integrity and the articles linked to that article.

