162

FIGURE 3-11

The EQUIPMENT_REPAIR
Relation After an Incorrect
Update

BY THE WAY

PART 2 Database Design

kemMumber EquipmentType AcquisiionCost RepairNumber RepairDate RepairCost
1 me Dil Press 3500.00 2000 20180505 37500
2 20 lahe 475000 2100 20180507 255.00
3100 Dril Press 30000 0 2200 20180513 178.00
4 300 s 2730000 0 2300 20180619 1875.00
5 100 Drill Press 350000 2400 2NBO75 0.00
§ 100 DilPess 550000 2500 20180817 275.00

costs. If there were, say, 10,000 rows in the table, however, it might be very difficult to detect
this error. This condition is called an update anomaly.

PR

Notice that the EQUIPMENT_REPAIR table in Figures 3-10 and 3-11 dupli-

" cates data. For example, the AcquisitionCost of the same item of equip-

| ment appears several times. Any table that duplicates data is susceptible to update

anomalies like the one in Figure 3-11. A table that has such inconsistencies is said to

have data integrity problems.

As we will discuss further in Chapter 4, to improve query speed, we sometimes

design a table to have duplicated data. Be aware, however, that any time we design a
table this way, we open the door to data integrity problems.

A Short History of Normal Forms

When Codd defined the relational model, he noticed that some tables had modification
anomalies. In his second paper,* he defined first normal form, second normal form, and
third normal form. He defined first normal form (1NF) as the set of conditions for a rela-
tion, shown in Figure 3-4. Any table meeting the conditions in Figure 3-4 is therefore a
relation in 1NE

This definition, however, brings us back to the “To Key or Not to Key” discussion. Codd's
set of conditions for a relation does not require a primary key, but one is clearly implied by
the condition that all rows must be unique. Thus, there are various opinions on whether or
not a relation has to have a defined primary key to be in INE®

For practical purposes, we will define 1NF as it is used in this book as a table that:

1. Meets the set of conditions for a relation, and
2. Hasa defined primary key®

Codd also noted that some tables (or, interchangeably in this book, relations) in 1NF
had modification anomalies. He found that he could remove some of those anomalies by
applying certain conditions. A relation that met those conditions, which we will discuss
later in this chapter, was said to be in second normal form (2NF). He also observed.
however, that relations in 2NF could also have anomalies, and so he defined third nor-
mal form (3NF), which is a set of conditions that removes even more anomalies and
which we will also discuss later in this chapter. As time went by, other researchers found

£E. F Codd and A. L. Dean, “Proceedings of 1971 ACM-SIGFIDET Workshop on Data Description,” Access
and Control, San Diego, California, November 11-12, 1971 ACM 1971.

SFor a review of some of the discussion, see the Wikipedia article at https/enwikipedia.org/wiki/
First_normal_form.

6Some definitions of 1NF also state that there can be “no repeating groups.” This refers to the multivalue, mul-
ticolumn problem we discuss in Chapter 4 and also deal with in our discussion of multivalued dependencies later
in this chapter.

FIGURE 3-12

Summary of Normalization
Theory

CHAPTER 3 The Relational Model and Normalization 163

still other ways that anomalies can occur, and the conditions for Boyce-Codd Normal
Form (BCNF) were defined.

These normal forms are defined so that a relation in BCNF is in 3NE, a relation in 3NF
is in 2NF, and a relation in 2NF is in 1NE Thus, if you put a relation into BCNE it is automati-
cally in the lesser normal forms.

Normal forms 2NF through BCNF concern anomalies that arise from functional depen-
dencies. Other sources of anomalies were found later. They led to the definition of fourth
normal form (4NF) and fifth normal form (5NF), both of which we will discuss later in
this chapter. So it went, with researchers chipping away at modification anomalies, each one
improving on the prior normal form.

In 1982, Ronald Fagin published a paper that took a different tack Instead of looking
for just another normal form, Fagin asked, “What conditions need to exist for a relation to
have no anomalies?” In that paper, he defined domain/key normal form (DK/NF) (and,
no. that is not a typo—the slash appears between domain and key in the complete name, but
between DK and NF in the acronym.) Fagin ended the search for normal forms by showing
that a relation in DK/NF has no modification anomalies and, further, that a relation that
has no modification anomalies is in DK/NE DK/NF is discussed in more detail later in this
chapter.

Normalization Categories

As shown in Figure 3-12, normalization theory can be divided into three major categories.
Some anomalies arise from functional dependencies, some arise from multivalued depen-
dencies, and some arise from data constraints and odd conditions.

2NE 3NE and BCNF are all concerned with anomalies that are caused by functional
dependencies. A relation that is in BCNF has no modification anomalies from functional
dependencies. It is also automatically in 2NF and 3NE and, therefore, we will focus on trans-
forming relations into BCNE However, it is instructive to work through the progression of
normal forms from 1NF to BCNF in order to understand how each normal form deals with
anomalies, and we will do this later in this chapter.®

As shown in the second row of Figure 3-12, some anomalies arise because of another
kind of dependency called a multivalued dependency. Those anomalies can be eliminated
by placing each multivalued dependency in a relation of its own, a condition known as 4NE
You will see how to do that in the last section of this chapter.

The third source of anomalies is esoteric. These problems involve specific, rare, and even
strange data constraints. Accordingly, we will not discuss them in this text.

Source of Anomaly Normal Forms Design Principles

Functional dependencies 1NF, 2NF, BCNF: Design tables so that every
3NF, BCNF determinant is a candidate key.

Multivalued dependencies 4NF 4NF: Move each multivalued

dependency to a table of its own.

Data constraints and oddities | 5NF, DK/NF DK/NF: Make every constraint a
logical consequence of candidate
keys and domains.

7R(mald Fagin, A Normal Form for Relational Databases That Is Based on Domains ancl Keys,” ACM
Transactwns on Database Systems, September 1981, pp. 387-415.

8See Christopher J. Date, An Introduction to Database Systems, 8th ed. (New York: Addison-Wesley, 2003) fora
complete discussion of normal forms.

164

FIGURE 3-13

The TNF STUDENT_
ACTIVITY Relation

PART 2 Database Design

From First Normal Form to Boyce-Codd Normal Form Step by Step

As we discussed earlier in this chapter, a table is in 1NF if and only if (1) it meets the defini-
tion of a relation in Figure 3-4 and (2) it has a defined primary key. From Figure 3-4 this means
that the following must hold: the cells of a table must be a single value, and neither repeat-
ing groups nor arrays are allowed as values; all entries in a column must be of the same data
type; each column must have a unique name, but the order of the columns in the table is
not significant; and no two rows in a table may be identical, but the order of the rows is not
significant. To this, we add the requirement of having a primary key defined for the table.

Second Normal Form ;

When Codd discovered anomalies in 1NF tables, he defined 2NF to eliminate some of these
anomalies. A relation is in 2NF if and only if it is in INF and all non-key attributes are determined
by the entire primary key. This means that if the primary key is a composite primary key, then
no non-key attribute can be determined by an attribute or set of attributes that make up only
part of the key. Thus, if you have a relation R (A, B, N, O, P) with the composite key (A, B),
then none of the nonkey attributes N, O, or P can be determined by just A or just B.

Note that the only way a non-key attribute can be dependent on part of the primary key
is if there is a composite primary key. This means that relations with single-attribute primary keys
are automatically in 2NE

For example, consider the STUDENT_ACTIVITY relation:

STUDENT _ACTIVITY (StudentID, Activity, ActivityFee)

The STUDENT ACTIVITY relation is in INF and is shown with sample-data in Figure 3-13.
Note that STUDENT ACTIVITY has the composite primary key (StudentID, Activity), which
allows us to determine the fee a particular student will have to pay for a particular activity.
However, because fees are determined by activities, ActivityFee is also functionally depen-
dent on just Activity itself, and we can say that ActivityFee is partially dependent on the
key of the table. The set of functional dependencies is therefore:

(StudentID, Activity) — ActivityFee
Activity — ActivityFee

Thus, there is a non-key attribute determined by part of the composite primary key, and
the STUDENT ACTIVITY relation is not in 2NE What do we do in this case? We will have to
move the columns of the functional dependency based on the partial primary key attribute
into a separate relation while leaving the determinant in the original relation as a foreign key.
We will end up with two relations:

STUDENT_ACTIVITY (StudentID, Activity)
ACTIVITY_FEE (Activity, ActivityFee)

STUDENT_ACTIVITY
Student!D | Activity BotivityFes
R _ = S
Skiing 200.00
Skiing 200.00
Swimming 50.00
Skiing 200.00
Swimming 50.00
Gof 6500
Swimming 50.00

G Wi o o b W R

P

FIGURE 3-14

The 2NF STUDENT_
ACTIVITY and ACTIVITY_
FEE Relations

FIGURE 3-15

The 2NF STUDENT_
HOUSING Relation

CHAPTER 3 The Relational Model and Normalization 165

STUDENT_ACTIVITY ACTIVITY_FEE

StudentlD Activity [Actviy ActiviyFee |
- R 1 - {
2 ~ Sking ‘2 Sking 20000 |
3 - Sking |3 Swnmng 5000 |
4 ~ Swimming
: e
& Swimming
7 Goff :
g Swimming

The Activity column in STUDENT_ACTIVITY becomes a foreign key. The new relations
are shown in Figure 3-14. Now, are the two new relations in 2NE? Yes. STUDENT_ACTIVITY
still has a composite primary key, but now has no attributes that are dependent on only a
part of this composite key. ACTIVITY_FEE has a set of attributes (just one each in this case)
that are dependent on the entire primary key.

Third Normal Form
However, the conditions necessary for 2NF do not eliminate all anomalies. To deal with
additional anomalies, Codd defined 3NE A relation is in 3NF if and only if it is in 2NF
and there are no non-key attributes determined by another non-key attribute. The technical name
for a non-key attribute determined by another non-key attribute is transitive depen-
dency.? We can therefore restate the definition of 3NF: a relation is in 3NF if and only
if it is in 2NF and it has no transitive dependencies. Thus, in order for our relation R (A, B,
N, O, P) to be in 3NF, none of the non-key attributes N, O, or P can be determined by
N, O,or P.

For example, consider the relation STUDENT_HOUSING shown in Figure 315,
The STUDENT HOUSING relation is in 2NF, and the table schema is:

STUDENT_HOUSING (StudentID, Building, BuildingFee)

Here we have a single-attribute primary key, StudentID, so the relation is in 2NF
because there is no possibility of a non-key attribute being dependent on only part of the
primary key. Furthermore, if we know the student, we can determine the building where he

or she is residing, so:

StudentID — Building

STUDENT_HOUSING

StudertlD Bulding BuidingFes
(1 {300} Randoph 320000
|2 200 ingersoll 340000
'3 300 Randoph ~ 3200.00
i4 400 Randoplh 3200.00
‘5 500 Pitkin 3500.00
6 600 ingersoll 3400.00
7 T ingersoll 3400.00
B Pikin 350000 |

91n terms of functional dependencies, a transitive dependency is defined as: [F A — B and B — C, THEN
A—=C.

166

FIGURE 3-16

The 3NF STUDENT_
HOUSING and BUILDING
FEE Relations

FIGURE 3-17

The 3NF STUDENT_
ADVISOR Relation

PART 2 Database Design

STUDENT_HOUSING BUILDING_FEE

StudentlD Building _Buiding BuildingFee |

1 Rndoph | |1 [ngerol | 340000 |
2 ingersoll 2 Ptkn 350000 |
3 Randoplh. 3 Randoph 3200.00 l
s Randoplh.
5 Pikn
: s
7 _ Ingérséﬂ_
g 800 Pitkin

However, the building fee is independent of which student is housed in the building,
and, in fact, the same fee is charged for every room in a building. Therefore, Building deter-
mines BuildingFee:

Building — BuildingFee

Thus, a non-key attribute (BuildingFee) is functionally determined by another non-key
attribute (Building), and the relation is not in 3NE

To put the relation into 3NE we will have to move the columns of the functional depen-
dency into a separate relation while leaving the determinant in the original relation as a

foreign key. We will end up with two relations:

STUDENT HOUSING (StudentID, Building)
BUILDING FEE (Building, BuildingFee)

The Building column in STUDENT_HOUSING becomes a foreign key. The two rela-
tions are now in 3NF (work through the logic yourself to make sure you understand 3NF)
and are shown in Figure 3-16.

Boyce-Codd Normal Form
Some database designers normalize their relations to 3NE Unfortunately, there are still
anomalies due to functional dependences in 3NE Together with Raymond Boyce, Codd
defined BCNF to fix this situation. A relation is in BCNF if and only if it is in 3NF and every
determinant is a candidate key.

For example, consider the relation STUDENT_ADVISOR shown in Figure 3-17, where
a student (StudentID) can have one or more majors (Major). a major can have one or more

STUDENT_ADVISOR

| StudentlD Major Advisorhlame
i e e ol

) i e
3 300 Math Riemann
4 400 Mah | Cauchy
5 500 Psychology . Peris

§ 60 Engish Auin
7 7000 Psychology Pels
g 700 Mah Remam
9 800 Mah Cauchy
10 800 Psychology Jung

CHAPTER 3 The Relational Model and Normalization 167

faculty advisors (AdvisorName), and a faculty member advises in only one major area. Note
that the figure shows two students (Student[Ds 700 and 800) with double majors (both stu-
dents show Majors of Math and Psychology) and two Subjects (Math and Psychology) with
two Advisors.

Because students can have several majors, StudentID does not determine Major.
Moreover, because students can have several advisors, StudentID does not determine
AdvisorName. Therefore, StudentID by itself cannot be a key. However, the composite key
(StudentID, Major) determines AdvisorName, and the composite key (StudentID, Advisor-
Name) determines Major. This gives us (StudentID, Major) and (StudentID, AdvisorName)
as two candidate keys. We can select either of these as the primary key for the relation. Thus,
two STUDENT ADVISOR schemas with different candidate keys are possible:

STUDENT ADVISOR (StudentID, Major, AdvisorName)

and

STUDENT ADVISOR (StudentID, Major, AdvisorName)

Note that STUDENT ADVISOR is in 2NF because it has no non-key attributes in the
sense that every attribute is a part of at least one candidate key. This is a subtle condition,
based on the fact that technically the definition of 2NF states that no non-prime attribute can
be partially dependent on a candidate key, where a non-prime attribute is an attribute
that is not contained in any candidate key. Furthermore, STUDENT_ADVISOR is in 3NF
because there are no transitive dependencies in the relation.

The two candidate keys for this relation are overlapping candidate keys because
they share the attribute Student[D. When a table in 3NF has overlapping candidate keys, it
can still have modification anomalies based on functional dependencies. In the STUDENT _
ADVISOR relation, there will be modification anomalies because there is one other func-
tional dependency in the relation. Because a faculty member can be an advisor for only one
major area, AdvisorName determines Major. Therefore, AdvisorName is a determinant but
not a candidate key.

Suppose that we have a student (StudentID = 300) majoring in psychology (Major =
Psychology) with faculty advisor Perls (AdvisorName = Perls). Further, assume that this row
is the only one in the table with the AdvisorName value of Perls. If we delete this row, we
will lose all data about Perls. This is a deletion anomaly. Similarly, we cannot insert the data
to represent the Economics advisor Keynes until a student majors in Economics. This is an
insertion anomaly. Situations like this led to the development of BCNE

What do we do with the STUDENT_ADVISOR relation? As before, we move the func-
tional dependency creating the problem to another relation while leaving the determinant
in the original relation as a foreign key. In this case, we will create the relations:

STUDENT ADVISOR (StudentID, AdvisorName)
ADVISOR_MAJOR (AdvisorName, Major)

The AdvisorName column in STUDENT_ADVISOR is the foreign key, and the two final
relations are shown in Figure 3-18.

Note that a relation in 3N may also already be in BCNE The only way a relation in 3NF can
have problems actually requiring further normalization work to getit into BCNF is if it has over-
lapping composite candidate keys. If the reladion (1) does not have composite candidate keys or (2)
has non-overlapping composite candidate keys, then it is already in BCNF once itis in 3NE

Eliminating Anomalies from Functional Dependencies with BCNF

Most modification anomalies occur because of problems with functional dependencies.
You can eliminate these problems by progressively testing a relation for INE 2NE 3NF, and
BCNF using the definitions of these normal forms given previously. We will refer to this as
the “Step-by-Step” method.

168

FIGURE 3-18

The BCNF STUDENT _
ADVISOR and ADVISOR_
MAJOR Relations

FIGURE 3-19

Process for Putting a
Relation into BCNF

PART 2 Database Design

STUDENT_ADVISOR ADVISOR_MAJOR

Student!D AdvisorMame 5 AdvisorMame Major
1 | Cauchy 1 iA | Engish
2) Jung 2 " Math
3 30 Riemann 3 Psychology
4 AT Cauchy F 4 Paychology
|5 500 Peris 5 Wath
6 600 ustio ‘
7 70 Pets
3 A0 Riemann
5 805 Cauchy
14 808 J_Ling

You can also eliminate such problems by simply designing (or redesigning) your
tables so that every determinant is a candidate key. This condition, which, of course,
is the definition of BCNE will eliminate all anomalies due to functional dependen-
cies. We will refer to this method as the “Straight-to-BCNF” or “general normalization”
method.

We prefer the “Straight-to-BCNF” general normalization strategy and will use it exten-
sively, but not exclusively, in this book. However, this is merely our preference—either
method produces the same results, and you (or your professor) may prefer the “Step-by-Step”
method.

The general normalization method is summarized in Figure 3-19. Identify every
functional dependency in the relation, and then identify the candidate keys. If there are
determinants that are not candidate keys, then the relation is not in BCNF and is subject to
modification anomalies. To put the relation into BCNE follow the procedure in step 3. To fix
this procedure in your mind, we will illustrate it with five different examples. We will also
compare it to the “Step-by-Step” approach.

Process for Putting a Relation into BCNF

1. ldentify every functional dependency.

2. Identify every candidate key.

3. If there is a functional dependency that has a
determinant that is not a candidate key:

A. Move the columns of that functional
dependency into a new relation.

B. Make the determinant of that functional
dependency the primary key of the new relation.

C. Leave a copy of the determinant as a foreign
key in the original relation,

D. Create a referential integrity constraint between
the original relation and the new relation.

4. Repeat step 3 until every determinant of every
relation is a candidate key.

Note: In step 3, if there is more than one such functional dependency,
start with the one with the most columns.

CHAPTER 3 The Relational Model and Normalization 169

BY fHE. WA‘;’ Our process rule that a relation is in BCNF if and only if every determinant
. is a candidate key is summed up in a variation of a widely known phrase:

| swear to construct my tables so that all non-key columns are dependent on the
key, the whole key and nothing but the key, so help me Codd!

This phrase actually is a very good way to remember the order of the normal forms:

| swear to construct my tables so that all non-key columns are dependent on

m the key, [This is 1NF]
B the whole key, [This is 2NF]
® and nothing but the key, [This is 3NF and BCNF]

so help me Codd!

The goal of the normalization process is to create relations that are in
BCNF. It is sometimes stated that the goal is to create relations that are
in 3NF, but after the discussion in this chapter, you should understand why BCNF is
preferred to 3NF.

Note that some problems are not resolved by even BCNF, and these will require
relations in 4NF. We will explain when we need to use 4NF after we discuss our exam-
ples of normalizing to BCNF.

BY THE WAY

Normalization Example 1
Consider the SKU_DATA table:

SKU_DATA (SKU, SKU_Description, Department, Buyer)
As discussed earlier, this table has three functional dependencies:

SKU —> (SKU_Description, Department, Buyer)
SKU_Description — (SKU, Department, Buyer)
Buyer — Department

Normalization Example 1: The “Step-by-Step” Method
Both SKU and SKU_Description are candidate keys. Logically, SKU makes more sense as the
primary key because it is a surrogate key, so our relation, which is shown in Figure 3-20, is:

SKU_DATA (SKU, SKU_Description, Department, Buyer)

Checking the relation against Figure 3-4, and noting that it has a defined primary key,
we find that SKU_DATA isin INE

Is the SKU DATA relation in 2NF? A relation is in 2NF if and only if it is in 1NF and
all non-key attributes are determined by the entire primary key. Because the primary key SKU is a
single attribute key, all the non-key attributes are therefore dependent on the entire primary
key. Thus, the SKU_DATA relation is in 2NE

Is the SKU_DATA relation in 3NF? A relation is in 3NF if and only if it is in 2NF and
there are no non-key attributes determined by another non-key attribute. Because we seem to have
two non-key attributes (SKU_Description and Buyer) that determine non-key attributes, the
relation is not in 3NF!

170 PART 2 Database Design

FIGURE 3-20 SKU_DATA
The SKU_DATA Relation

SKU SKU_Description Department Buyer

1 1100100 | Std. Scuba Tark, Yelow Water Sports Pete Hansen
2 100200 Std ScubaTank Magenta Water Spots Pete Hansen
3 100300 Sd Scuba Tark.lightBlue WaterSpots Pete Hansen
4 100400 Std ScubaTank.DakBue WaterSpots Pete Hansen
5 100500 Std. Scuba Tank,Light Green Water Sports ~Pete Hansen
§ 100600 Std Scuba Tank,DarkGreen Water Spots Pete Hansen
7

8

9

101100 Dive Mask, Small Clear Water Spots Nancy Meyers
. wu'm _Dingaéf(. Med Clear Water'Ms chyMeym
3 201000 HafdomeTet Campng Cindylo
10 202000 Halfdome Tent Vestbule ~ Camping Cindy Lo
11 203000 Hafdome Tert Vestibule - Wide Camping Cindy Lo
12 301000 Llight iy Climbing Hamess ~ Climbing Jeny Martin
13 302000 LockingCarsbiner,Oval ~ Climbing Jenry Mattin

However, this is where things get a bit tricky. A non-key attribute is an attribute that is
neither (1) a candidate key itself nor (2) part of a candidate key. SKU_Description, there-
fore, is not a non-key attribute (sorry about the double negative). The only non-key attribute
is Buyer!

Therefore, we must remove only the functional dependency

Buyer — Department

We will now have two relations (using the name BUYER_2 to distinguish this relation
from BUYER in the Cape Codd database as discussed earlier in this chapter):

SKU DATA 2 (SKU, SKU_Description, Buyer)
BUYER_2 (Buyer, Department)

Is SKU DATA_2 in 3NF? Yes, it is—there are no non-key attributes that determine
another non-key attribute.

Is the SKU DATA_ 2 relation in BCNF? A relation is in BCNF if and only if it is in 3NF
and every determinant is a candidate key. The determinants in SKU_DATA_2 are SKU and
SKU_Description:

SKU — (SKU_Description, Buver)
SKU_Description — (SKU, Buyer)

Both determinants are candidate keys (they both determine all the other attributes in
the relation). Thus, every determinant is a candidate key, and the relationship is in BCNE

At this point, we need to check the BUYER 2 relation to determine if it is in BCNE
Work through the steps yourself for BUYER_2 to check your understanding of the “Step-by-
Step” method. You will find that BUYER 2 is in BCNE and therefore our normalized rela-
tions, as shown with the sample data in Figure 3-21, are:

SKU DATA 2 (SKU, SKU_Description, Buyer)
BUYER_2 (Buyer, Department)

Both of these tables are now in BCNF and will have no anomalies due to functional
dependencies. For the data in these tables to be consistent, however, we also need to define a
referential integrity constraint (note that this is step 3D in Figure 3-19):

SKU_DATA_2.Buyer must exist in BUYER_2.Buyer

CHAPTER 3 The Relational Model and Normalization 171

FIGURE 3-21 SKU_DATA_2
The Normalized SKU_
DATA_2 and BUYER_2
Relations

SKU_Description
0 Std. Scuba Tark, Magert
| Sid, Scuba Tank, Light B
. Std. Scuba Tank, Dark Blue
Std. Scuba Tank, Light Green
| Std. Scuba Tank, Dark Green
i T.Zvé Masiél.ilsmaﬁ Clear
Orve Mask, Med Clear
 HafdomeTent

AT ~~ T T TR %) R~ R TR L R

10 Halfdome Tent Vestbule yio,
1) Halfdome Tet Vestibule - Wide Cindylo
12301000 Light Fly Climbing Hamess Jemry Martin
13 (302000 Lockingcarabiner,Oval Jemy Mar :
BUYER_2

‘5 Bu;,'ei _ Department |
1 [Gndylo] Campng

2 i oy e

l 3 Nancy Meyers ‘Water Sparts
|4 PeteHansen Water Sports

This statement means that every value in the Buyer column of SKU_DATA_2 must also
exist as a value in the Buyer column of BUYER_2.

Normalization Example 1: The “Straight-to-BCNF” Method

Now let's rework this example using the “Straight-to-BCNE” method. SKU and SKU_Descrip-
tion determine all of the columns in the table, so they are candidate keys. Buyer is a determi-
nant, but it does not determine all of the other columns, and hence it is not a candidate key.
Therefore, SKU_DATA has a determinant that is not a candidate key and is therefore not in
BCNE It will have modification anomalies.

To remove such anomalies, in step 3A in Figure 3-19, we move the columns of functional
dependency whose determinant is not a candidate key into anew relation. In this case, we place
Buyer and Department into a new relation (again using the name BUYER 2 to distinguish this
relation from BUYER in the Cape Codd database as discussed earlier in this chapter):

BUYER 2 (Buyer, Department)

Next, in step 3B in Figure 3-19, we make the determinant of the functional dependency
the primary key of the new relation. In this case, Buyer becomes the primary key:

BUYER_2 (Buyer, Department)

Next, following step 3C in Figure 3-19, we leave a copy of the determinant as a foreign
key in the original relation. Thus, SKU_DATA becomes SKU_DATA_2:

SKU_DATA_2 (SKU, SKU_Description, Buyer)
The resulting relations are thus:

SKU DATA_2 (SKU, SKU_Description, Buyer)
BUYER_2 (Buyer, Department)

where SKU_DATA_2 Buyer is a foreign key to the BUYER_2 relation.

172

PART 2 Database Design

Both of these relations are now in BCNF and will have no anomalies due to functional
dependencies. For the data in these tables to be consistent, however, we also need to define
the referential integrity constraint in step 3D in Figure 3-19:

SKU_DATA_2 Buyer must exist in BUYER_2.Buyer

This statement means that every value in the Buyer column of SKU_DATA_2 must also exist
as avalue in the Buyer column of BUYER_2. Sample data for the resulting tables is the same
as shown in Figure 3-21. '

Note that both the “Step-by-Step” method and the “Straight-to-BCNF” method produced
exactly the same results. Use the method you prefer; the results will be the same. To keep this
chapter reasonably short, we will use only the “Straight-to-BCNF” method for the rest of the
normalization examples.

Normalization Example 2
Now consider the EQUIPMENT_REPAIR relation in Figure 3-10. The structure of the table is:

EQUIPMENT _REPAIR (ItemNumber, EquipmentType, AcquisitionCost,
RepairNumber, RepairDate, RepairCost)

Examining the data in Figure 3-10, the functional dependencies are:

ItemNumber — (EquipmentType, AcquisitionCost)

RepairNumber — (ItemNumber, EquipmentType, AcquisitionCost, RepairDate,
RepairCost)

Both TternNumber and RepairNumber are determinants, but only RepairNumber is a
candidate key. Accordingly, EQUIPMENT_REPAIR is not in BCNF and is subject to modifi-
cation anomalies. Following the procedure in Figure 3-19, we place the columns of the prob-
lematic functional dependency into a separate table, as follows:

EQUIPMENT _ITEM (ItemNumber, EquipmentType, AcquisitionCost)

and remove all but TtemNumber from EQUIPMENT_REPAIR (and rearrange the columns
so that the primary key RepairNumber is the first column in the relation) to create:

REPAIR (RepairNumber, ItemNumber, RepairDate, RepairCost) _
We also need to create the referential integrity constraint:
REPAIR ItemNumber must exist in EQUIPMENT_ITEM.ItemNumber

Data for these two new relations are shown in Figure 3-22.

BY THE WAY There is another, more intuitive way to think about normalization. Do you

remember your eighth-grade English teacher? She said that every para-
graph shouid have a single theme. If you write a paragraph that has two themes, you
should break it up into two paragraphs, each with a single theme.

The problem with the EQUIPMENT_REPAIR relation is that it has two themes: one
about repairs and a second about items. We eliminated modification anomalies by
breaking that single table with two themes into two tables, each with a single theme.
Sometimes, it is helpful to look at a table and ask, “How many themes does it have?” If
it has more than one, then redefine the table so that it has a single theme.

Normalization Example 3
Consider now the Cape Codd database ORDER_ITEM relation shown in Figure 3-1 with the
structure:

ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

FIGURE 3-22

The Normalized
EQUIPMENT_ITEM and
REPAIR Relations

CHAPTER 3 The Relational Model and Normalization 173

EQUIPMENT_ITEM

temhumber EquipmentType AcquisttionCost
- 100 R . 350900
5 o e s |
3 . 300 Mill w0 |
REPAIR
RepairNumber * temNumber RepairDate RepairCost
3 2200 100 20180613 178.00
4 2300 300 2018-06-13 1875.00
5 2400 100 20180705 0.00
& 2500 100 20180817 27500

with functional dependencies:

(OrderNumber, SKU) — (Quantity, Price, ExtendedPrice)
(Quantity, Price) — ExtendedPrice

This table is not in BCNFE because the determinant (Quantity, Price) is not a candidate
key. We can follow the same normalization practice as illustrated in examples 1 and 2, but in
this case. because the second functional dependency arises from the formula

ExtendedPrice = (Quantity * Price)

we reach a silly result.

To see why, we follow the procedure in Figure 3-19 to create tables such that every
determinant is a candidate key. This means that we move the columns Quantity, Price, and
ExtendedPrice to tables of their own, as follows:

EXTENDED PRICE (Quantity, Price, ExtendedPrice)
ORDER _ITEM_2 (OrderNumber, SKU, Quantity, Price)

Notice that we left both Quantity and Price in the original relation as a composite for-
eign key. These two tables are in BCNE, but the values in the EXTENDED_PRICE table are
ridiculous. They are just the results of multiplying Quantity by Price. The simple fact is that
we do not need to create a table to store these results. Instead, any time we need to know
ExtendedPrice, we will just compute it. In fact, we can define this formula to the DBMS and
let the DBMS compute the value of ExtendedPrice when necessary. You will see how to do
this with Microsoft SQL Server 2017, Oracle’s Oracle Database, and MySQL 5.7 in Chapters 104,
10B, and 10C, respectively.

Using the formula, we can remove ExtendedPrice from the table. The resulting table is
in BCNEF:

ORDER_ITEM_2 (OrderNumber, SKU, Quantity, Price)

Note that Quantity and Price are no longer foreign keys. The ORDER_ITEM_2 table with
sample data now appears as shown in Figure 3-23.

Normalization Example 4
Consider the following table that stores data about student activities:

STUDENT_ACTIVITY (StudentID, StudentName, Activity, ActivityFee,
AmountPaid)

174

FIGURE 3-23

The Normalized ORDER _
ITEM_2 Relation

FIGURE 3-24

Sample Data for the
STUDENT_ACTIVITY
Relation

PART 2 Database Design

ORDER_ITEM_2

OrderNumber SKU Quartty Price
| R AT i
» R o
3 2000 101100 4 - 5000
4 2000 101200 2 . 50.00
5 3000 100200 1 300.00
§ | 3000 W 2 50.00
7 3000 101200 1 5000

where StudentID is a student identifier, StudentName is student name, Activity is the name
of a club or other organized student activity, ActivityFee is the cost of joining the club or
participating in the activity, and AmountPaid is the amount the student has paid toward the
ActivityFee. Figure 3-24 shows sample data for this table.

StudentID is a unique student identifier, so we know that:

StudentID — StudentName
However, does the following functional dependency exist?
StudentID — Activity

It does if a student belongs to just one club or participates in just one activity, but it does
not if a student belongs to more than one club or participates in more than one activity.
Looking at the data, student Davis with StudentID 200 participates in both Skiing and
Swimming, so StudentID does not determine Club. StudentID does not determine
ActivityFee or AmountPaid, either.

Now consider the StudentName column. Does StudentName determine StudentID? Is,
for example, the value ‘Jones’ always paired with the same value of StudentID? No, there are
two students named Jones’, and they have different StudentID values. StudentName does
not determine any other column in this table either.

Considering the next column, Activity, we know that many students can belong to a
club. Therefore, Activity does not determine StudentlD or StudentName. Does Activity
determine ActivityFee? Is the value ‘Skiing, for example, always paired with the same value
of ActivityFee? From these data, it appears so, and using just this sample data, we can con-
clude that Activity determines ActivityFee.

However, this data is just a sample. Logically, it is possible for students to pay different
costs, perhaps because they select different levels of activity participation. If that were the
case, then we would say that

(StudentID, Activity) — ActivityFee

STUDENT_ACTIVITY

StudertlD StudentMame Activity ActivityFee AmourtPaid

; '14}}0 o - - e
2 100 Jones Skiing 200.00 0.00

3 200 Davis Skiing 20000 000

4 200 Davis Swimming .5{).% : 50.00
5 300 Garmett Sking 20000 160.00
& 300 Garett Swimming - 50.00 50.00
¥ 400 Jones Gof 6500 65.00
8 A00 Jones Swimming = 53.00 50.00

e

CHAPTER 3 The Relational Model and Normalization 175

To find out, we need to check with the users. Here, assume that all students pay the same
fee for a given activity. The last column is AmountPaid, and it does not determine anything,
So far, we have two functional dependencies:

StudentID — StudentName
Activity — ActivityFee

Are there other functional dependencies with composite determinants? No single
column determines AmountPaid, so consider possible composite determinants for it.
AmountPaid is dependent on both the student and the club the student has joined.
Therefore, it is determined by the combination of the determinants StudentID and Activity.
Thus, we can say

(StudentID, Activity) > AmountPaid

So far we have three determinants: StudentID, Activity, and (StudentID, Activity).
Are any of these candidate keys? Do any of these determinants identify a unique row?
From the data, it appears that (StudentID, Activity) identifies a unique row and is a can-
didate key. Again, in real situations, we would need to check this assumption out with
the users.

STUDENT ACTIVITY PAYMENT is not in BCNF because columns StudentID and
Activity are both determinants but neither is a candidate key. StudentID and Activity are
only part of the candidate key (StudentID, Activity).

Both StudentlD and Activity are part of the candidate key (StudentlD,
Activity). This, however, is not good enough. A determinant must have alf of
the same columns to be the same as a candidate key.

BY THE WAY |

To normalize this table, we need to construct tables so that every determinant is a can-
didate key. We can do this by creating a separate table for each functional dependency as we
did before. The result is:

STUDENT (StudentID, StudentMName)
ACTIVITY (Activity, ActivityFee)
PAYMENT (StudentID, Activity, AmountPaid)

with referential integrity constraints:

PAYMENT.Student] D must exist in STUDENT.StudentID
and

PAYMENT. Activity must exist in ACTIVITY.Activity

These tables are in BCNF and will have no anomalies from functional dependencies. The
sample data for the normalized tables are shown in Figure 3-25.

- Normalization Example 5
Now consider a normalization process that requires two iterations of step 3 in the procedure
in Figure 3-19. To do this, we will extend the SKU_DATA relation by adding the budget code
of each department. We call the revised relation SKU_DATA_3 and define it as follows:

SKU_DATA_3 (SKU, SKU_Description, Dep.artment, DeptBudgetCode, Buyer)

176

FIGURE 3-25

The Normalized STUDENT,

ACTIVITY, and PAYMENT
Relations

FIGURE 3-26

Sample Data for the SKU_
DATA_3 Relation

PART 2 Database Design

STUDENT

PAYMENT

] Studentlil StudentName " S—tudentlD Activity AmountPaid
A jlnet?. |1 0 (G 6500
‘\ 2 Davis t 2 W0 Skiing . boo
'3 Gamett 3 1208 - Sang 0.00
|4 Jories ! 4 200 Smm:ﬂg 50.00

5 1300 Sking 10000
| ACTIVITY 5 300 Smg 50.00 :
| - Ay ActiviyFee 7 a0 Goff £5.00
| 1ol (B0 8 40 Swimming 50.00
[2 Sking 200.00
| 3 Swimming 50.00

Sample data for this relation are shown in Figure 3-26. SKU_DATA_3 has the following
functional dependencies:

SKU — (SKU_Description, Department, DeptBudgetCode, Buyer)
SKU_Description — (SKU, Department, DeptBudgetCode, Buyer)
Buyer — (Department, DeptBudgetCode)

Department — DeptBudgetCode

DeptBudgetCode — Department

Of the five determinants, both SKU and SKU_Description are candidate keys, but Buyer, Depart-
ment, and DeptBudgetCode are not candidate keys. Therefore, this relation is not in BCNE

To normalize this table, we must transform it into two or more tables that are in BCNE In
this case, there are two problematic functional dependencies. According to the note at the end
of the procedure in Figure 3-19, we take the functional dependency whose determinant is not a
candidate key and has the largest number of columns first. In this case, we take the colummns of

Buyer — (Department, DeptBudgetCode)

and place them in a table of their own.
Next, we make the determinant the primary key of the new table, remove all columns
except Buyer from SKU_DATA 3, and make Buyer a foreign key of the new version of

SKU_DATA 3

SKU SKU_Description Department ﬁeptBudge‘{Code Buyer
1 [100100 : Std Scuba Tank,Yelow | WaterSpots BC-100 . Pete Hansen
2 100200 Std ScubaTank,Magenta WaterSpoms BC100 Pete Hansen
3 100300 Std. Scuba Tank, light Blue Water Spots BC-100 . Pete Hansen
4 100400 Std Scuba Tank, DarkBue WaterSpots BC-100 PeteHansen
5 100500 Std Scuba Tank, lightGreen WaterSpots BC-100 Pete Hansen
§ 100600 Sid. Scuba Tank, Dark Green Water Spots BC100 Pete Hansen
7 101100 DiveMask SmalClear WaterSpoms BCI00 __;ercyMey...j
8 101200 | Dive Mask, MedCear Watersmts-{_ ' "
$ 201000 HofdomeTert
10 W-_;Haf-dmneTedVaﬂnﬂe e
11 203000 Haff-dome Tent Vestibule - w.de'-f__ﬁ'
12| 301000 “mﬂymﬁmam_ Cimbi
13 | 302000 Locking carabiner, Oval

CHAPTER 3 The Relational Model and Normalization 177

SKU DATA_3, which we will name SKU_DATA_4. We can also now assign SKU as the
primary key of SKU_DATA_4. The results are (using the name BUYER_3 to distinguish this
relation from the other versions of BUYER discussed earlier in this chapter): :

BUYER_3 (Buyer, Department, DeptBudgetCode)
SKU_DATA 4 (SKU, SKU_Description, Buyer)

We also create the referential integrity constraint:
SKU DATA 4.Buyer must exist in BUYER_3.Buyer
The functional dependencies from SKU_DATA._4 are:

SKU — (SKU_Description, Buyer)
SKU_Description — (SKU, Buyer)

Because every determinant of SKU_DATA_4 is also a candidate key, the relationship is now
in BCNE Looking at the functional dependencies from BUYER 3, we find:

Buyer — (Department, DeptBudgetCode)
Department — DeptBudgetCode
DeptBudgetCode — Department

BUYER 3 is not in BCNF because neither of the determinants Department and DeptBudget-
Code are candidate keys. In this case, we must move (Department, DeptBudgetCode) into a
table of its own. Following the procedure in Figure 3-19 and breaking BUYER 3 into two tables
(DEPARTMENT and BUYER 4) gives us a set of three tables (where SKU as a surrogate key
is the logical for primary key fir SKU_DATA_4, and Department is the logical primary key for
DEPARTMENT because other columns are semantically descriptors of the department):

DEPARTMENT (Department, DeptBudgetCode)

BUYER_4 (Buyer, Department)
SKU_DATA 4 (SKU, SKU_Description, Buyer)

These tables have the referential integrity constraints:

SKU DATA_4.Buyer must exist in BUYER_4.Buyer
BUYER 4.Department must exist in DEPARTMENT.Department

The functional dependencies from all three of these tables are:

Department — DeptBudgetCode
DeptBudgetCode — Departinent
Buyer — Department

SKU — (SKU _Description, Buyer)
SKU_Description — (SKU, Buyer)

At last, every determinant is a candidate key, and all three of the tables are in BCNE The
resulting relations from these operations are shown in Figure 3-27.

Eliminating Anomalies from Multivalued Dependencies

All of the anomalies in the last section were due to functional dependencies, and when
we normalize relations to BCNE we eliminate these anomalies. However, anomalies can
also arise from another kind of dependency: the multivalued dependency. A multivalued
dependency occurs when a determinant is matched with a particular set of values.

178 PART 2 Database Design
DEPARTMENT SKU_DATA 4
| Depatment DeptBudgetCode [SKU SKU_Description Buyer
P11 : 1 1100100 ; Std. Scuba Tank, Yelow Pete Hansen
2 2 100200 S ScubaTark,Magents Pefe Hansen
E 3 FIDSNR Sl il s o foc Do
4 100400 Sid. Scuba Tark, Dak Bue | Pete Hansen
5 100500 Sid.Souba Tank LightGreen Pete Hansen
- 6 100600 Sd.Scuba Tank,DakGroen PeteHarsen
1 [Cndylo | Comping 7 101100 DweMask SmalClear NancyMeyers
|2 JemyMatin Cimbing 3 101200 DiveMask.MedClear ~ Nancy Meyers
|3 NancyMeyers Water Sports 3 201000 HafdomeTent Gndylo
|4 PeteHansen Water Spors 10 202000 ' Hafdome TentVestbie [Gndylo.
11 203000 Hafdome Tert Vestibule -Wide ' Cindy Lo
:'G”RE3"_27 12 301000 Light FyGimbing Hamess Jeny Mattin
T i W Lot eyt

and SKU_DATA_4 Relations

FIGURE 3-28

Three Examples of
Multivalued Dependencies

Examples of multivalued dependencies are:

EmployeeName — — EmployeeDegree

EmployeeName — — EmployeeSibling
PartKitName — — Part

In each case, the determinant is associated with a set of values, and example data for
each of these multivalued dependencies are shown in Figure 3-28. Such expressions are
read as “EmployeeName multidetermines EmployeeDegree” and “EmployeeName multide-
termines EmployeeSibling” and “PartKitName multidetermines Part.” Note that multideter-

minants are shown with a double arrow rather than a single arrow.

Employee Jones, for example, has degrees AA and BA. Employee Green has degrees
BS, MS, and PhD. Employee Chau has just one degree, BS. Similarly, employee Jones
has siblings (brothers and sisters) Fred, Sally, and Frank. Employee Green has sibling
Nikki, and employee Chau has siblings Jonathan and Eileen. Finally, PartKitName Bike
Repair has parts Wrench, Screwdriver, and Tube Fix. Other kits have parts as shown in

Figure 3-28.
EMPLOYEE_DEGREE PARTKIT_PART
EmployeeMame EmployeeDeagree PartkitMame Par
PR e ek
) i e , BEES e
3 Green MS 3 . BkeRepar Wrench
4 Green PhD 4 FstAd Aspirin
5 Jones AA 5 First Aid Bandaids
5 Jones BA g First Aid Elastic Band
7 FrstAd Ibuprofin
EMPLOYEE_SIBLING s s =
_EmployeeName Employee Sibiing 3 Toobox Dl bits
1 Chau :Hieen 10 Toobox Hammer
2 e Jorathan 11 Toobox Saw
3 [Green N 12 Toobox Screwdiver
4 Jones Frank
5 Jones Fred
§ Jones Sally

il

FIGURE 3-29
EMPLOYEE_DEGREE _
SIBLING Relation with Two
Multivalued Dependencies

FIGURE 3-30
PARTKIT_PART_PRICE
Relation with a Functional
Dependency and a
Multivalued Dependency

CHAPTER 3 The Relational Model and Normalization 179

EMPLOYEE_DEGREE_SIBLING

EmployeeName EmployeeDegree EmployesSibling -
| “Tgs e
2 ihait ¢ o BS _ : Jonathan
3 Green BS Nikki
4 Green MS Nikdi
5 Green P Nikcki
£ Jones AA Frank
) Jones AL Fred
g Jones AA Sally
5 Jones EA Frank
10 Jones BA Fred
11 Jones BA Sally

Unlike functional dependencies, the determinant of a multivalued dependency can
never be the primary key. In all three of the tables in Figure 3-28, the primary key consists
of the composite of the two columns in each table. For example, the primary key of the
EMPLOYEE_DEGREE table is the composite key (EmployeeName. EmployeeDegree).

Multivalued dependencies pose no problem as long as they exist in tables of their own. None
of the tables in Figure 3-28 has modification anomalies. However, if A — — B, then any relation
that contains A, B, and one or more additional columns will have modification anomalies.

For example, consider the situation if we combine the employee data in Figure 3-28
into a single EMPLOYEE_DEGREE_SIBLING table with three columns (EmployeeName,
EmployeeDegree, EmployeeSibling), as shown in Figure 3-29.

Now, what actions need to be taken if employee Jones earns an MBA? We must add
three rows to the table. If we do not, if we only add the row (Jones’, ‘MBA, ‘Fred), it will
appear as if Jones is an MBA with her brother Fred, but not with her sister Sally or her other
brother Frank. However, suppose Green earns an MBA. Then we need only add one row
(Green', MBA, Nikki). But, if Chau earns an MBA, we need to add two rows. These are
insertion anomalies. There are equivalent modification and deletion anomalies as well.

In Figure 3-29, we combined two multivalued dependencies into a single table and
thereby created modification anomalies. Unfortunately, we will also get anomalies if we
combine a multivalued dependency with any other column, even if that other column has
no multivalued dependency:.

Figure 3-30 shows what happens when we combine the multivalued dependency

PartKitName — — Part

PARTKIT_PART_PRICE
Part Part kit Price

1 1 Screwdiver 1435
Z Tube Fix 1495
3 Wrench 1435
& Aspirin 2495
5 Bandzids 2495
& HasticBand 24355
7 {buprofin 2435
g Dl 7495
g Drill bit= 7485
1z Hammer 7495
11 Saw 74595
12 Screwdriver 7435

180

FIGURE 3-31

Placing the Two Multivalued
Dependencies in Figure 3-2
into Separate Relations

PART 2 Database Design

PRODUCT_BUYER_SKU PRODUCT BUYER_MAJOR

...%N?Ti“._.. SKU_Managed BuyerName CollegeMajor
1 {Ooylo 201000 1 [Cndylo | Hetoy
2 Cndylo 202000 2 JennyMatin Business Administration
3 JennyMatin 301000 3 JennyMatin Engiish Literature
4 JernyMatin 302000 4 MNancy Meyers At
5 NancyMeyers 101100 5 . MNancy Meyers Info Systems
6 Nancy Meyers 101200 § PeteHansen Busness Administration
7 PeteHansen 100100 ‘
8 PeteHansen 100200

with the functional dependency
PartKitName — PartKitPrice

For the data to be consistent, we must repeat the value of price for as many rows as each
kit has parts. For this example, we must add three PARTKIT PART PRICE rows for the Bike
Repair kit, four rows for the First Aid kit, and five rows for the Toolbox kit. The result is dupli-
cated data that can cause data integrity problems.

Now you also know the problem with the relation in Figure 3-2, Anomalies exist in that
table because it contains two multivalued dependencies:

BuyerName — — SKU_Managed
BuyerName — — CollegeMajor

Fortunately, it is easy to deal with multivalued dependencies: put them into a table of
their own. None of the tables in Figure 3-28 has modification anomalies because each table
consists of only the columns in a single, multivalued dependency. Thus, to fix the table in

Figure 3-2, we must move BuyerName and SKU Managed into one table and BuyerName
and CollegeMajor into a second table:

PRODUCT_BUYER_SKU (BuyerName, SKU_Managed)
PRODUCT_BUYER_MAJOR (BuyerName, CollegeMajor)

The results are shown in Figure 3-31. If we want to maintain strict equivalence between
these tables, we would also add the referential integrity constraint:

PRODUCT_BUYER MAJOR.BuyerName must exist in
PRODUCT_BUYER_SKU.BuyerName

This referential integrity constraint may not be necessary, depending on the requirements of
the application.

Notice that when you put multivalued dependencies into a table of their own, they dis-
appear. The result is just a table with two columns, and the primary key (and sole candidate
key) is the composite of those two columns. When multivalued dependencies have been
isolated in this way, the table is said to be in_fourth normal form (4NF).

The hardest part of multivalued dependencies is finding them. Once you know
they exist in a table, just move them into a table of their own. Whenever you encoun-
ter tables with odd anomalies, especially anomalies that require you to insert, modify,
or delete different numbers of rows to maintain integrity, check for multivalued
dependencies.

ides o s

CHAPTER 3 The Relational Model and Normalization 181

3 S—

BY THE WAY You will sometimes hear people use the term normalize in phrases like ’

“that table has been normalized” or “check to see if those tables are nor-
malized.” Unfortunately, not everyone means the same thing with these words. Some
people do not know about BCNF, and they will use it to mean tables in 3NF, which is a
lesser form of normalization, one that allows for anomalies from functional dependen-
cies that BOCNF does not allow. Others use it to mean tables that are both BCNF and
4NF. Others may mean something else. The best choice is to use the term normalize to
mean tables that are in both BCNF and 4NF.

Fifth Normal Form
There is a fifth normal form (5NF), also known as Project-Join Normal Form (PJ/NF),

which involves an anomaly where a table can be split apart but not correctly joined back
together. However, the conditions under which this happens are complex, and generally if
a relation is in 4NF it is in SNE We will not deal with 5NF in this book. For more informa-
tion about 5NE start with the works cited earlier in this chapter and the Wikipedia article at
http://en.wikipedia.org/wiki/Fifth_normal form.

Domain/Key Normal Form

As discussed earlier in this chapter, in 1982 Ronald Fagin published a paper that defined
domain/key normal form (DK/NF). Fagin asked, “What conditions need to exist for a rela-
tion to have no anomalies?” He showed that a relation in DK/NF has no modification anoma-
lies and, further, that a relation that has no modification anomalies is in DK/NE

But what does this mean? Basically, DK/NF requires that all the constraints on the data
values be logical implications of the definitions of domains and keys. To the level of detail in
this text, and to the level of detail experienced by 99 percent of all database practitioners,
this can be restated as follows: every determinant of a functional dependency must be a
candidate key. This, of course, is simply our definition of BCNE, and, for practical purposes,
relations in BCNF are in DK/NF as well.

Databases arise from three sources: from existing data, from new systems development,
and from the redesign of existing databases. This chapter and the next are concerned with
databases that arise from existing data. Even though a table is a simple concept, certain
tables can lead to surprisingly difficult processing problems. This chapter uses the concept
of normalization to understand and possibly solve those problems. Figure 3-3 lists terms
you should be familiar with.

A relation is a special case of a table; all relations are tables, but not all tables are rela-
tions. Relations are tables that have the properties listed in Figure 3-4. Three sets of terms
are used to describe relation structure: (relation, attribute, tuple); (table, column, row); and
(file, field, and record). Sometimes these terms are mixed and matched. In practice, the
terms table and relation are commonly used synonymously, and we will do so for the bal-
ance of'this text.

In a functional dependency, the value of one attribute, or attributes, determines the .

value of another. In the functional dependency A — B, attribute A is called the determi-
nant. Some functional dependencies arise from equations, but many others do not. The
purpose of a database is, in fact, to store instances of functional dependencies that do not
arise from equations.

182 PART 2 Database Design

Determinants that have more than one attribute are called composite determinants.
IfA— (B, C), then A— B and A — C (decomposition rule). However, if (A, B) — C, then, in gen-
eral, neither A — Cnor B — C. It is true that if A— B and A — C, then A — (B, C) (union rule).

If A — B, the values of A may or may not be unique in a relation. However, every time a
given value of A appears, it will be paired with the same value of B. A determinant is unique
in a relation only if it determines every other attribute of the relation. You cannot always rely
on determining functional dependencies from sample data. The best idea is to verify your
conclusions with the users of the data. :
| A key is a combination of one or more columns used to identify one or more rows. A
composite key is a key with two or more attributes. A determinant that determines every
other attribute is called a candidate key. A relation may have more than one candidate key.
One of them is selected to be used by the DBMS for finding rows and is called the primary
key. A surrogate key is an artificial attribute used as a primary key. The value of a surrogate
key is supplied by the DBMS and has no meaning to the user. A foreign key is a key in one
table that references the primary key of a second table. A referential integrity constraint is
a limitation on data values of a foreign key that ensures that every value of the foreign key
has a match to a value of a primary key.

The three kinds of modification anomalies are insert, update, and delete. Codd and
others defined normal forms for describing different table structures that lead to anoma-
lies. A table that meets the conditions listed in Figure 3-4 is in INE Some anomalies arise
from functional dependencies. Three forms, 2NE 3NE and BCNE are used to treat such
anomalies,

In this text, we are only concerned with the best of these forms, BCNE If a relation is in
BCNE then no anomalies from functional dependencies can occur. A relation is in BCNEF if
every determinant is a candidate key.

Relations can be normalized using either a “Step-by-Step” method or a “Straight-to-
BCNF” method. Which method to use is a matter of personal preference, and both methods
produce the same results.

Some anomalies arise from multivalued dependencies. A multidetermines B, or A—— B,
if A determines a set of values. If A multidetermines B, then any relation that contains A, B,
and one or more other columns will have modification anomalies. Anomalies due to multi-
valued dependencies can be eliminated by placing the multivalued dependency in a table of
its own. Such tables are in 4NE

There is a SNE but generally tables in 4NF are in 5SNE DK/NF has been defined, but in
practical terms, the definition of DK/NF is the same as the definition of BCNE

Key Terms R bt IQ

attribute entity integrity constraint partially dependent "
Boyce-Codd Normal Form (BCNF) fifth normal form (5NF) primary key
candidate key first normal form (1NF) Project-Join Normal Form (PJ/NF) *
composite determinant foreign key referential integrity constraint i
composite key fourth normal form (4NF) relation
data integrity problems functional dependency second normal form (2NF)
database integrity functionally dependent SKU (stock keeping unit)
decomposition rule insertion anomaly surrogate key
deletion anomaly key third normal form (3NF)
determinant multivalued dependency transitive dependency
domain non-prime attribute tuple

“domain integrity constraint normal forms union rule

domain/key normal form (DK/NF)
entity

null value
overlapping candidate key

update anomaly

