TUTORIAL

DATABASE DESIGN

This tutorial has three sections. The first section briefly reviews basic database terminology. The second
section teaches database design. The third section features a database design problem for practice.

REVIEW OF TERMINOLOGY

You will begin by reviewing some basic terms that will be used throughout this textbook. In Access, a
database is a group of related objects that are saved in one file. An Access object can be a table, form, query,
or report. You can identify an Access database file by its suffix, .acedb.

A table consists of data that is arrayed in rows and columns. A row of data is called a record. A column
of data is called a field. Thus, a record is a set of related fields. The fields in a table should be related to one
another in some way. For example, a company might want to keep its employee data together by creating a
database table called Employee. That table would contain data fields about employees, such as their names
and addresses. Tt would not have data fields about the company’s customers; that data would go in a
Customer table.

A field’s values have a data type that is declared when the table is defined. Thus, when data is entered
into the database, the software knows how to interpret each entry. Data types in Access include the
following:

o Text for words

e [nteger for whole numbers

e Double for numbers that have a decimal value

e Currency for numbers that represent dollars and cents

e Yes/No for variables that have only two values (such as 1/0, on/off, yes/no, and true/false)
e Date/Time for variables that are dates or times

Each database table should have a primary key field—a field in which each record has a unique value.
For example, in an Employee table, a field called Employee Identification Number (EIN) could serve as a
primary key. (This assumes that each employee is given a number when hired, and that these numbers are
not reused later.) Sometimes, a table does not have a single field whose values are all different. In that case,
two or more fields are combined into a compound primary key. The combination of the fields’ values is
unique.

Database tables should be logically related to one another. For example, suppose a company has an
Employee table with fields for EIN, Name, Address, and Telephone Number. For payroll purposes, the
company has an Hours Worked table with a field that summarizes Labor Hours for individual employees. The
relationship between the Employee table and Hours Worked table needs to be established in the database so
you can determine the number of hours worked by any employee. To create this relationship, you include
the primary key field from the Employee table (EIN) as a field in the Hours Worked table. In the Hours
Worked table, the EIN field is then called a foreign key because it's from a “foreign” table.

In Access, data can be entered directly into a table or it can be entered into a form, which then inserts
the data into a table. A form is a database object that is created from an existing table to make the process of
entering data more user-friendly.

A query is the database equivalent of a question that is posed about data in a table (or tables). For
example, suppose a manager wants to know the names of employees who have worked for the company for
more than five years. A query could be designed to search the Employee table for the information. The query
would be run, and its output would answer the question.

Queries can be designed to search multiple tables at a time. For this to work, the tables must be
connected by a join operation, which links tables on the values in a field that they have in common. The
common field acts as a “hinge” for the joined tables; when the query is run, the query generator treats the
joined tables as one large table.

{
|
|
H
1
&)

Tutorial A

In Access, queries that answer a question are called select queries because they select relevant data from
the database records. Queries also can be designed to change data in records, add a record to the end of a
table, or delete entire records from a table. These queries are called update, append, and delete queries,
respectively.

Access has a report generator that can be used to format a table’s data or a query’s output.

DATABASE DESIGN

Designing a database involves determining which tables belong in the database and then creating the fields
that belong in each table. This section begins with an introduction to key database design concepts, then
discusses design rules you should use when building a database. First, the following key concepts are defined:

e Entities
e Relationships
e Attributes

Database Design Conceptis

Computer scientists have highly formalized ways of documenting a database’s logic. Learning their notations
and mechanics can be time-consuming and difficult. In fact, doing so usually takes a good portion of a
systems analysis and design course. This tutorial will teach you database design by emphasizing practical
business knowledge; the approach should enable you to design serviceable databases quickly. Your instructor
may add more formal techniques.

A database models the logic of an organization’s operation, so your first task is to understand the
operation. You can talk to managers and workers, make your own observations, and look at business
documents, such as sales records. Your goal is to identify the business’s “entities” (sometimes called objects).
An entity is a thing or event that the database will contain. Every entity has characteristics, called attributes,
and one or more relationships to other entities. Let’s take a closer look.

Entities

As previously mentioned, an entity is a tangible thing or an event. The reason for identifying entities is that
an entity eventually becomes a table in the database. Entities that are things are easy to identify. For
example, consider a video store. The database for the video store would probably need to contain the names
of DVDs and the names of customers who rent them, so you would have one entity named Video and another
named Customer.

In contrast, entities that are events can be more difficult to identify, probably because they are more
conceptual. However, events are real, and they are important. In the video store example, one event would be
Video Rental and another event would be Hours Worked by employees.

In general, your analysis of an organization’s operations is made easier when vou realize that
organizations usually have physical entities such as these:

¢ Employees

e (Customers

s Inventory (products or services)
e Suppliers

Thus, the database for most organizations would have a table for each of these entities. Your analysis
also can be made easier by knowing that organizations engage in transactions internally (within the
company) and externally (with the outside world). Such transactions are explained in an introductory
accounting course, but most people understand them from events that ocecur in daily life. Consider the
following examples:

* Organizations generate revenue from sales or interest earned. Revenue-generating transactions
include event entities called Sales and Interest Earned.

e Organizations incur expenses from paying hourly employees and purchasing materials from
suppliers. Hours Worked and Purchases are event entities in the databases of most organizations.

Thus, identifying entities is a matter of observing what happens in an organization. Your powers of
observation are aided by knowing what entities exist in the databases of most organizations.

Database Design

Relationships
As an analyst building a database, you should consider the relationship of each entity to the other entities you
have identified. For example, a college database might contain entities for Student, Course, and Section to
contain data about each. A relationship between Student and Section could be expressed as “Students enroll
in sections.”

An analyst also must consider the cardinality of any relationship. Cardinality can be one-to-one, one-
to-many, or many-to-many:

e In a one-to-one relationship, one instance of the first entity is related to just one instance of the
second entity.

o In a one-to-many relationship, one instance of the first entity is related to many instances of the
second entity, but each instance of the second entity is related to only one instance of the first.

e In a many-to-many relationship, one instance of the first entity is related to many instances of
the second entity, and one instance of the second entity is related to many instances of the first.

For a more concrete understanding of cardinality, consider again the college database with the Student,
Course, and Section entities. The university catalog shows that a course such as Accounting 101 can have
more than one section: 01, 02, 03, 04, and so on. Thus, you can observe the following relationships:

e The relationship between the entities Course and Section is one-to-many. Each course has many
sections, but each section is associated with just one course.

s The relationship between Student and Section is many-to-many. Each student can be in more
than one section, because each student can take more than one course. Also, each section has
more than one student.

Thinking about relationships and their cardinalities may seem tedious to you. However, as you work
through the cases in this text, you will see that this type of analysis can be valuable in designing databases. In
the case of many-to-many relationships, you should determine the tables a given database needs; in the case
of one-to-many relationships, you should decide which fields the tables need to share.

Atiributes

An attribute is a characteristic of an entity. You identify attributes of an entity because attributes become
a table’s fields. If an entity can be thought of as a noun, an attribute can be considered an adjective that
describes the noun. Continuing with the college database example, consider the Student entity. Students
have names, so Last Name would be an attribute of the Student entity and therefore a field in the Student
table. First Name would be another attribute, as well as Address, Phone Number, and other descriptive
fields.

Sometimes it can be difficult to tell the difference between an attribute and an entity, but one good way is
to ask whether more than one attribute is possible for each entity. If more than one instance is possible, but
you do not know the number in advance, you are working with an entity. For example, assume that a student
could have a maximum of two addresses—one for home and one for college. You could specify attributes
Address 1 and Address 2. Next, consider that you might not know the number of student addresses in
advance, meaning that all addresses have to be recorded. In that case, vou would not know how many fields
to set aside in the Student table for addresses. Therefore, you would need a separate Student Addresses table
(entity) that would show any number of addresses for a given student.

Database Design Rules

As described previously, your first task in database design is to understand the logic of the business situation.
Once you understand this logic, you are ready to build the database. To create a context for learning about
database design, look at a hypothetical business operation and its database needs.

Example: The Talent Agency

Suppose you have been asked to build a database for a talent agency that books musical bands into
nightclubs. The agent needs a database to keep track of the agency’s transactions and to answer day-to-day
questions. For example, a club manager often wants to linow which bands are available on a certain date at a
certain time, or wants to know the agent’s fee for a certain band. The agent may want to see a list of all band
members and the instrument each person plays, or a list of all bands that have three members.

N e

6 Tutorial A

Suppose that you have talked to the agent and have observed the agency’s business operation. You
conclude that your database needs to reflect the following facts:

1. A booking is an event in which a certain band plays in a particular club on a particular date,
starting and ending at certain times, and performing for a specific fee. A band can play more
than once a day. The Heartbreakers, for example, could play at the East End Cafe in the
afternoon and then at the West End Cafe on the same night. For each booking, the club pays
the talent agent. The agent keeps a five percent fee and then gives the remainder of the
payment to the band.

2 Rach band has at least two members and an unlimited maximum number of members. The agent
notes a telephone number of just one band member, which is used as the band’s contact
qumber. No two bands have the same name or telephone number.

3 Band member names are not unique. For example, two bands could each have a member named
Sally Smith.

4. The agent keeps track of just one instrument that each band member plays. For the purpose of
this database, “vocals” are considered an instrument.

! 5. Each band has a desired fee. For example, the Lightmetal band might want #700 per booking,
and would expect the agent to try to get at least that amount.

6. Each nightclub has a name, an address, and a contact person. The contact person has a
telephone number that the agent uses to call the club. No two clubs have the same name,
contact person, or telephone number. Each club has a target fee. The contact person will try to
get the agent to accept that fee for a band’s appearance.

7. Some clubs feed the band members for free; others do not.

Before continuing with this tutorial, you might try to design the agency’s database on your own. Ask
yourself: What are the entities? Recall that business databases usually have Customer, Employee, and
Inventory entities, as well as an entity for the event that generates revenue transactions. Each entity becomes
a table in the database. What are the relationships among the entities? For each entity, what are its
attributes? For each table, what is the primary key?

Six Database Design Rules

Assume that you have gathered information about the business situation in the talent agency example. Now
you want to identify the tables required for the database and the fields needed in each table. Observe the
following six rules:

Rule 1: You do not need a table for the business. The database represents the entire business. Thus, in the
example, Agent and Agency are not entities.

Rule 2: Identify the entities in the business description. Look for typical things and events that will become
tables in the database. In the talent agency example, you should be able to observe the following entities:

e Things: The product (inventory for sale) is Band. The customer is Club.
e Events: The revenue-generating transaction is Bookings.

You might ask yourself: Is there an Employee entity? Isn't Instrument an entity? Those issues will be
discussed as the rules are explained.

Rule 3: Look for relationships among the entities. Look for one-to-many relationships between entities. The
relationship between those entities must be established in the tables, using a foreign key. For details, see the
following discussion in Rule 4 about the relationship between Band and Band Member.

Look for many-to-many relationships between entities. Each of these relationships requires a third entity
that associates the two entities in the relationship. Recall the many-to-many relationship from the college
database scenario that involved Student and Section entities. To display the enrollment of specific students in
specific sections, a third table would be required. The mechanies of creating such a table are described in
Rule 4 during the discussion of the relationship between Band and Club.

Rule 4: Look for attributes of each entity and designate a primary key. As previously mentioned,
you should think of the entities in your database as nouns. You should then create a list of adjectives
that describe those nouns. These adjectives are the attributes that will become the table’s fields.
After you have identified fields for each table, you should check to see whether a field has unique

N

[

Database Design

values. If such a field exists, designate it as the primary key field; otherwise, designate a compound
primary key.

In the talent agency example, the attributes, or fields, of the Band entity are Band Name, Band Phone
Number, and Desired Fee, as shown in Figure A-1. Assume that no two bands have the same name, so the
primary key field can be Band Name. The data type of each field is shown.

BAND

Field Name Data Type

Band Name (primary key) Text
‘Band Phone Number AR : . Text

Desired Fee Currency

Source: ® 2016 Cengage Learning®
FIGURE A-1 The Band table and its fields

Two Band records are shown in Figure A-2.

"Band Name (primary key) Band Phone Number e | Desired Fee
Heartbreakers 981 831 1763 8800
Lightmetal : 981 831 2000 3700

Source: © 2016 Cengage Leamning®
FIGURE A-2 Records in the Band table

If two bands might have the same name, Band Name would not be a good primary key, so a different
unique identifier would be needed. Such situations are common. Most businesses have many types of
inventory, and duplicate names are possible. The typical solution is to assign a number to each product to use
as the primary key field. A college could have more than one faculty member with the same name, so each
faculty member would be assigned an employee identification number. Similarly, banks assign a personal
identification number (PIN) for each depositor. Each automobile produced by a car manufacturer gets a
unique vehiele identification number (VIN). Most businesses assign a number to each sale, called an invoice
number. (The next time you go to a grocery store, note the number on your receipt. It will be different from
the number on the next customer’s receipt.)

At this point, you might be wondering why Band Member would not be an attribute of Band. The answer
is that, although you must record each band member, you do not know in advance how many members are in
each band. Therefore, you do not know how many fields to allocate to the Band table for members. (Another
way to think about band members is that they are the agency’s employees, in effect. Databases for
organizations usually have an Employee entity.) You should create a Band Member table with the attributes
Member ID Number, Member Name, Band Name, Instrument, and Phone. A Member ID Number field is
needed because member names may not be unique. The table and its fields are shown in Figure A-3.

BAND MEMBER

Field Name Bata Type .

Member ID Number (primary key)

Membe_zr Name - ~ Text
Band Name .(fore.i gn key) . - Text
Insu;mnent el Text
f‘hone 2 Text

Source: © 2016 Cengage Learning®
FIGURE A-3 The Band Member table and its fields

il
"
1l

i A

A e e

Tutorial A

Note in Figure A-3 that the phone number is classified as a Text data type because the field values will
not be used in an arithmetic computation. The benefit is that Text data type values take up fewer bytes than
Numerical or Currency data type values; therefore, the file uses less storage space. You should also use the
Text data type for number values, such as zip codes.

Five records in the Band Member table are shown in Figure A-4.

Member ID Number

Member Name Band Name' Instrument

{primary key) : ¥ ;
0001 Pete Goff Heartbreakers Guitar AR
oo, s e : Heartbreakers Voedls 9814441234
0003 5, : He;mbre:akers g Keyﬁoard : 981 555 1199
0004 o JoeJuckson Lightmetal Sax e
0605 R : Sl;te Hot-}-pes Lightmetal i’iano 981 888 1765

Source: ® 2016 Cengage Learning®
FIGURE A-4 Records in the Band Member table

You can include Instrument as a field in the Band Member table because the agent records only one
instrument for each band member. Thus, you can use the instrument as a way to deseribe a band member,
much like the phone number is part of the description. Phone could not be the primary key because two
members might share a telephone and because members might change their numbers, making database
administration more difficult.

You might ask why Band Name is included in the Band Member table. The common-sense reason is that
you did not include the Member Name in the Band table. You must relate bands and members somewhere,
and the Band Member table is the place to do it.

To think about this relationship in another way, consider the cardinality of the relationship
between Band and Band Member. It is a one-to-many relationship: one band has many members,
but each member in the database plays in just one band. You establish such a relationship in the
database by using the primary key field of one table as a foreign key in the other table. In Band
Member, the foreign key Band Name is used to establish the relationship between the member and his
or her band.

The attributes of the Club entity are Club Name, Address, Contact Name, Club Phone Number, Preferred
Fee, and Feed Band®. The Club table can define the Club entity, as shown in Figure A-5.

cLuB

Field Name

Club Name {primary key) T

Address : : ot :

Comstiane | Text

Club Phone Number . : e . 4
Preferred Fee : ; ' ; G oy it :
Feed Band?': gl ; 2 508 Yeéfﬁo 5

Source: © 2016 Cengage Leaming®
FIGURE A-5 The Club table and its fields

R R A

Database Design

Two records in the Club table are shown in Figure A-6.

Ciub Name : Ciub Phone

(primary key) Address Contact Name : Number : ; :Prefekred Fee Feed Band? _.
East End 1 Duce St. Al Pots 981 444 8877 8600 Yes

WestBnd 1. 99 DuceSt. . ¥alDots GRS 0011 o wses0 o S Na

Source: © 2016 Cengage Learning®
FIGURE A-6 Records in the Club table

You might wonder why Bands Booked into Club (or a similar name) is not an attribute of the Club table.
There are two reasons. First, you do not know in advance how many bookings a club will have, so the value
cannot be an attribute. Second, Bookings is the agency’s revenue-generating transaction, an event entity, and
you need a table for that business transaction. Consider the booking transaction next.

You know that the talent agent books a certain band into a certain club for a specific fee on a certain
date, starting and ending at a specific time. From that information, you can see that the attributes of the
Bookings entity are Band Name, Club Name, Date, Start Time, End Time, and Fee. The Bookings table and its
fields are shown in Figure A-7.

BOOKINGS
Field Name : ;
Band Name (foreign key) Text
| Club Name (foreign key) Text
: .Date : Dataf'E‘imé
- Start Time et : -Date/’[ime
End- Ti.tﬁe ; . Date/Time
' Fee : Currency

Source: © 2016 Cengage Leamning®
FIGURE A-7 The Bookings table and its fields—and no designation of a primary key

Some records in the Bookings table are shown in Figure A-8.

BandName ClubName ' StatTme. © EndTme | Fe
Heartbreakers East End 11/21/16 21:30 23:30 3500
Heartbreakers Bast Bnd 11/22716 2100 SRlR R N
Hearthreakers West End “ 11/28/16 ; 19:00 21:00 ‘SSOG
Lightmetal East End 112146 18:00 i 20:06 $700
Lightmetal West Pade 1122116 19:00 21:00 ' 8750

Source; © 2016 Cengage Learning®
FIGURE A-8 Records in the Bookings table

Note that no single field is guaranteed to have unique values, because each band is likely to be booked
many times and each club might be used many times. Furthermore, each date and time can appear more
than once. Thus, no one field can be the primary key.

If a table does not have a single primary key field, you can make a compound primary key whose field
values will be unique when taken together. Because a band can be in only one place at a time, one possible
solution is to create a compound key from the Band Name, Date, and Start Time fields. An alternative
solution is to create a compound primary key from the Club Name, Date, and Start Time fields.

Tutorial A

If you don’t want a compound key, you could create a field called Booking Number. Each booking would
then have its own unique number, similar to an invoice number.

You ean also think about this event entity in a different way. Over time, a band plays in many clubs,
and each club hires many bands. Thus, Band and Club have a many-to-many relationship, which signals
the need for a table between the two entities. A Bookings table would associate the Band and Club tables.
You implement an associative table by including the primary keys from the two tables that are associated.
In this case, the primary keys from the Band and Club tables are included as foreign keys in the Bookings
table.

Rule 5: Avoid data redundancy. You should not include extra (redundant) fields in a table.

Redundant fields take up extra disk space and lead to data entry errors because the same value must
be entered in multiple tables, increasing the chance of a keystroke error. In large databases, keeping
track of multiple instances of the same data is nearly impossible, so contradictory data entries become
a problem.

Consider this example: Why wouldn’t Club Phone Number be included in the Bookings table as a
field? After all, the agent might have to call about a last-minute booking change and could quickly
look up the number in the Bookings table. Assume that the Bookings table includes Booking Number as
the primary key and Club Phone Number as a field. Figure A-9 shows the Bookings table with the
additional field,

BOOKINGS
- Field Name
Booking Number (primary key) Text
 Band Name (foreign liey) L i
Club Name {foreig;i :iiﬁ}’) | ‘ " : : Text
Club Phone Number o U ext
Date : Date/Time
Start Time . ' : Gkl Date/Time
End Time 7 f)ate/Tima
Fee ; Currency

Source: © 2016 Cengage Learning®
FIGURE A-8 The Bookings table with an unnecessary field—Club Phone Number

The fields Date, Start Time, End Time, and Fee logically depend on the Booking Number primary key—
they help define the booking, Band Name and Club Name are foreign keys and are needed to establish the
relationship between the Band, Club, and Bookings tables. But what about Club Phone Number? It is not
defined by the Booking Number. It is defined by Club Name—in other words, it is a function of the club, not
of the booking. Thus, the Club Phone Number field does not belong in the Bookings table. It is already in the
Club table.

Perhaps you can see the practical data-entry problem of including Club Phone Number in Bookings.
Suppose a club changed its contact phone number. The agent could easily change the number one time, in
the Club table. However, the agent would need to remember which other tables contained the field and
change the values there too. In a small database, this task might not be difficult, but in larger databases,
having redundant fields in many tables makes such maintenance difficult, which means that redundant data is
often incorrect.

You might object by saying, “What about all of those foreign keys? Aren’t they redundant?” In a sense,
they are. But they are needed to establish the one-to-many relationship between one entity and another, as
discussed previously.

Rule 6: Do not include a field if it can be calculated from other fields. A calculated field is made using the
query generator. Thus, the agent’s fee is not included in the Bookings table because it can be calculated by
query (here, five percent multiplied by the booking fee).

